Marc Chaigneau Yoshito Okuno, Andrey Krayev, Filippo Fabbri

HORIBA Scientific AIST-NT Inc. IMEM-CNR Institute

TEOS characterization of 2D materials – from graphene to TMDCs

30-03-2017

Graphene2017

Bringing Scanning Probe Microscopies...

- SPM bring a lot of information on the physical characteristics of materials
 - Topography
 - Mechanical properties
 - Electrical and magnetic properties
- SPM is truly a nanoscale imaging technique...
- ...but it lacks *chemical* sensitivity

SS-DNA on HOPG functionalized with octadecylamine. 500nm frequency shift image.

... and Raman together

Confocal Raman Microscopy is a very specific chemical imaging

- Precise structural information, wide areas of application
- Non-destructive technique, compatible with many environments
- A wide spectrum of available laser sources (from UV to IR : possibility of resonant Raman scattering)

Drawbacks

- Low cross-section (~ 10⁻³⁰)
- Limited spatial resolution

Graphene- HORIBA

- 156 x 180 = 28080 spectra (step = 0.5 μm)
- 2 min 08 (EMCCD, SWIFT; Acg. Time 2 ms + 1.5 ms)

© 2017 HORIBA, Ltd. All rights reserved.

Let's break the Rayleigh criterion!

Nano Lightning Rod

plays the role of a Nano-Antenna

. Signal Enhancement

• Near-Field Resolution

© 2017 HORIBA, Ltd. All rights reserved.

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Conventional Raman VS TERS

Confocal Raman and TERS of the same area, graphene oxide and CNTs on Au

Confocal Raman 13 mW; integration 1 s

130 μW; integration 0.2 s

HORIBA

Explore the future

Bringing SPM and Raman together

<u>Tip Enhanced Raman Spectroscopy (TERS)</u> aka NanoRaman aka Near-field Raman Spectroscopy

 $\ensuremath{\textcircled{}}$ 2017 HORIBA, Ltd. All rights reserved.

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

NanoRaman: Optical configurations

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

TERS: spatial resolution

CNTs maps out-of-lab conditions!

Optical resolution capability: 8 nm Pixel step: **1.3 nm** \rightarrow chemical sensitivity in both X and Y direction

Recorded @ SPIE San Diego, 2015

μm

© 2017 HORIBA, Ltd. All rights reserved. Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

AIST-NT

TERS Response of Graphene Oxide

Raman shift, cm⁻¹

- a) 100 pixels per line TERS map of D-band intensity
- b) Topography image of the same flake
- c) representative TERS spectra
- d) distribution of the ratio of G to D band intensities

Increase of both the D and G TERS band intensities at creases and wrinkles
increase of TERS activity is not consequence of the increased thickness of the flake at folds

© 2017 HORIBA, Ltd. All rights reserved.

Combined TERS and KPFM mapping of GO-COOH

TERS image

N. Kumar, W. Su (NPL), M. Chaigneau (HORIBA), in preparation

© 2017 HORIBA, Ltd. All rights reserved. Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

Combined TERS and KPFM mapping of GO-COOH

The Fermi level in an area of GO increases with I_D/I_G (ie with density of defects)

© 2017 HORIBA, Ltd. All rights reserved.

N. Kumar, W. Su (NPL), M. Chaigneau (HORIBA), in preparation

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

HORIBA

ENERA

Non gap-mode TERS and TEPL: MoS₂

CVD grown MoS₂ on Si substrate, Ag tip, 594 nm, reflection configuration

Y. Okuno, M. Chaigneau, HORIBA Scientific

F. Fabbri, IMEM (submitted).

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Non gap-mode TERS and TEPL: MoS₂

CVD grown MoS₂ on Si substrate, Ag tip, 594 nm, reflection configuration

Y. Okuno, M. Chaigneau, HORIBA Scientific

F. Fabbri, IMEM (submitted).

Explore the future

Combined TERS and KPFM mapping of MoS₂

(a) TEPL map, (b) AFM image of monolayer and bilayer MoS2 flakes and (c) Kelvin Force image of the same area

- PL intensity, and TERS (through separation between A1g and E2g peaks) are consistent in distinguishing monolayer and bilayer flakes
- Kelvin probe force map shows positive values (~100 mV) for bilayer flakes and negative values around -300 mV for monolayer flakes. →the Fermi energy increases in bilayer MoS2.

Non gap-mode TERS: WS₂

Kastl, Chen, Kuykendall, Darlington, Borys, Krayev, Schuck, Aloni & Schwartzberg (LBL), Andrey Krayez (AIST-NT) (submitted).

CONCLUSIONS

- TERS IS READY for real-life analytical application on number of scientifically interesting samples.
- Without detailed NANOSCALE characterization of 1-d and 2D materials, their use in next generation devices is pretty much impossible. TERS can provide reliable information on peculiarities of local structure with resolution <u>below 10 nm</u>.
- TERS is extended to two-dimensional materials with dominating out-ofplane Raman-active modes such as WS₂, MoS₂, WSe₂...

AFM (topographic/structural) + TERS (chemical) + TEPL (optoelectronic) + KPFM / cAFM (local work function / local conductivity)

© 2017 HORIBA, Ltd. All rights reserved.

Thank you very much for your attention.

marc.chaigneau@horiba.com

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific