

Graphene-Based High Performance Infrared Photodetectors

Chris Bower Research Director, Emberion Limited, Cambridge, UK

Application Areas

Automotive night vision

Machine vision

Thermal

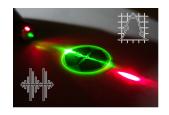
Surveillance & hyperspectral imaging and a surveillance & hyperspectral imaging and a surveillance with the surveillance of th

Emberion in a Nutshell


- Customer and application driven company
- Photodetectors and imagers for night vision, machine vision, spectroscopy, hyperspectral and X-ray imaging
- Venture capital funded spin-out from Nokia's R&D
- Operating in Cambridge, UK, and Espoo, Finland
- A team of 20 top experts with long experience in product development and applied research

Emberion Technology Palette

Graphene Transducers



Ultrasensitive graphene charge transducer

Very large arrays of graphene transducers

Low noise detection

Photonic absorbers

Nanocrystalline broad spectrum photonic absorbers

Radiation absorbers for thermal cameras

Wide spectral range

Electronics integration

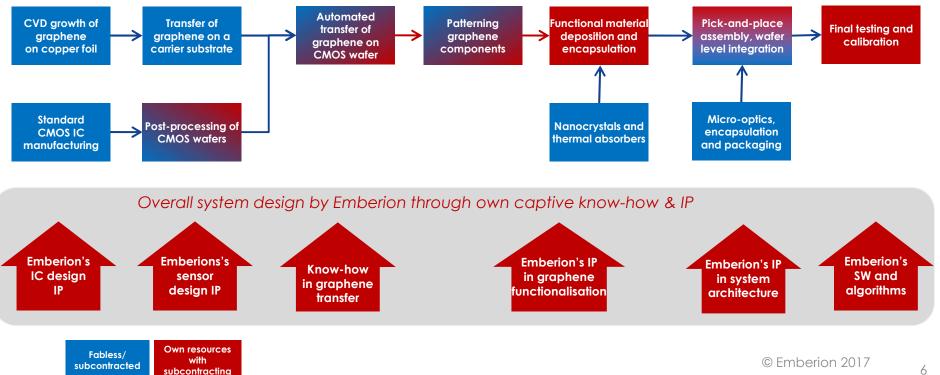
CMOS post-processed detector arrays – beyond VGA resolution

Integration of graphene detector arrays on polymer substrates

Scalable resolution

Imager modules

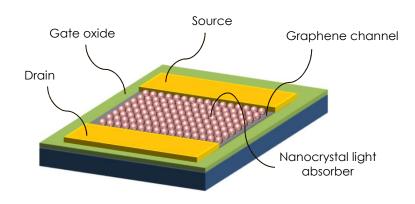
Image processing solutions based on efficient processing HW

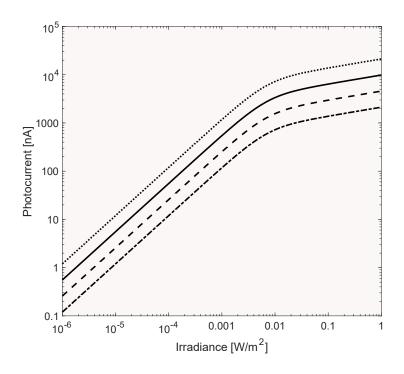

Mechanics and optics designed according to the application needs

Plug-and-play integration

Emberion's Semi-Fabless Manufacturing Flow

Emberion manages the whole production process through captive know-how and concentrates its resources on the most value adding parts of the process

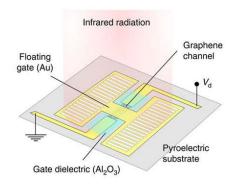

Why Graphene

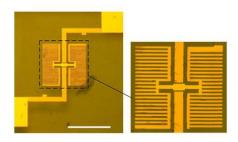

	CMOS/Silicon	Graphene	Printed organic electronics	III-V semi- conductors
Electronics performance	√	√	X	✓
Large-area deposition	X	√	√	X
Flexible substrate	X	√	✓	X
Low cost fabrication	√	√	✓	X
Heterogeneous integration	√	√	✓	X

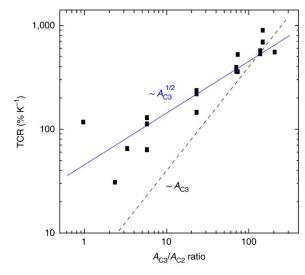
Light-to-Charge Transduction

 $n_{\text{graphene}} \approx \text{QE} \cdot \tau \cdot \Phi_{\text{photon}}$

Competitiveness of Emberion vis-SWIR Technology


Customer requirements	InGaAs	CMOS	QD diodes	Emberion
Dynamic range; no saturation; anti-blooming				
Low noise, low light performance (extreme night vision)				
Low cost, scalable integration on readout electronics	•	4		
Large wavelength range (vis - 2000 nm)			•	•
High video frame rate image capture (> 100 Hz)			•	•


Room Temperature MIR Sensing



Thermal imaging

- Unique combination of pyroelectric detector with a graphene bolometer – 'graphenebased pyroelectric bolometer' leads to TCR up to 900% K⁻¹ (300x300µm²)
- 'H' shaped gate of a GFET is in direct electrical contact with the PZT layer so that charge in the PZT layer is amplified by the GFET
- There is no load resister so the device operates in direct current mode so does not need an optical chopper
- Uncooled sensitivity <15mK
- Tunable & Selective (Multispectral in one chip) MWIR to LWIR (absorption layer controlled)
- <±0.15°C Excellent temperature resolution

$$TCR(R_0) = \frac{1}{R_0} \cdot \frac{dR}{dT} = -\frac{1}{I_0} \cdot \frac{dI}{dT}$$

Where are we today?

Strong value proposition tested with several key players in the selected business verticals

 Graphene sensor technology platform enables integration of high performance photodetectors and other sensors on CMOS and flexible electronics systems

Working for customer commitment and validation

- Building on customers' needs and requirements
- Technology maturity to demonstrate our value proposition and to provide samples for customers' R&D and validation processes

We have an excellent R&D network that builds a value chain

- Local collaborations in Finland and UK
- · Graphene Flagship community has been very valuable for us

