Commercialization of Functionalised Graphene Coating

Siva Bohm & Mark Thompson

Talga Technologies Ltd UK, Talga GmbH Germany, Talga Sweden (Subsidiary of Talga Resources Ltd)

> Graphene Flagship 2017, Barcelona-Spain 29th March 2017

What we do

- Talga is an advanced materials company with a scalable and cost effective process to liberate graphene and graphite from its large high quality graphite ore deposits without crushing or milling.
- Talga is a listed public company on the Australian Stock Exchange (code TLG) with subsidiary operations in Sweden, Germany and United Kingdom.
- Potential to be worlds largest volume supplier of graphene products, ultrathin micro/nano graphite, Few Layer Graphene (Talphene[™]) materials, as well as conductive carbon/silicate filler for industrial applications
- > Additionally tuned Graphene applied technology provider, B2B.

Operations

Talga Resources Ltd Australia - Corporate HQ

Part of Talga team at Phase 2 pilot plant commissioning in Rudolstadt, Germany

Talga Advanced Materials GmbH Germany - pilot process facility

Talga Mining Pty Ltd Filial Sweden - graphite source

Talga Technologies Ltd UK - product development

Talga is different

- World's highest grade JORC/NI43-101 graphite resource[#]
- Process technology requires no crushing, no grinding
- Deposit in Sweden top class jurisdiction
- Germany pilot plant scaling up technology and large scale product dev. solution provider to customers
- Vertically integrated raw ore-to-product producer with developing products in energy storage/harvesting, coatings, inks application and advanced conductive material (functional) products
- Low capex/opex/funding requirements
- Value added Applied Graphene products in Cambridge, Talga UK

[#] see http://www.techmetalsresearch.com/metrics-indices/tmr-advanced-graphite-projects-index/ Copyright Talga Technologies Ltd, 28.03.2017

Commercial Advantages

Vertically integrated with in-house product expertise value-adding to raw materials

- **Pilot plant** operational & successfully scaling up
- Product pipeline across multiple large technology and bulk sectors
- Process technology enables bulk high quality graphene production
 - **Low cost** 'no crush/grind' & low enviro-impact process

Qroducts

ta

Highest grade graphite resources in the world

Large and unique 'electrode' style ore deposits

Top class **jurisdiction** Sweden

Global Graphite Resources by Grade

Talga owns 3 of Top 10 grade graphite resources in world

- Pipeline of development to deliver into market
- Focus on margins and volume of market applications, not resource tonnes for tonnes sake

Nunasvaara Yalbra **Balama West Ativa Balama West Mualia** Lac Guéret **Balama East** Kookaburra Gully Jalkunen Lac Knife Koppio Campoona Uley Raitajärvi Kringel Balama North Nicanda Hill Epanko Geumam Wilclo South Kambale Duwi Taehwa **Balama West Other** Merelani East Mousseau West Molo Graphite Creek **Balama North Cobra Plains** Nachu Samcheok McIntosh Target 1 Loharano Lochaber Albany Coosa Kearney **Bissett Creek**

Source: http://www.techmetalsresearch.com/metrics-indices/tmr-advanced-graphite-projects-index/

Copyright Talga Technologies Ltd, 28.03.2017

Average Grade of In-situ Graphite

Operations - Trial Mining 2016

Copyright Talga Technologies Ltd, 28.03.2017

Innovative graphite ore mining technique

Extracts ore as direct use "**electrodes**"

No 'drill and blast' of ore = less dust and noise/minimise environmental impact

Trial of larger, tailor-made and automated ore block cutting equipment successful

~5,000t extracted to date to feed upscaled pilot test processing and graphene product development

Electrochemical Exfoliation Process - Advantages

- Process liberates graphene and micrographite directly from raw ore
- Requires no crushing, no grinding, no jet milling
- Makes ultrafine and ultrathin size particles, a type of material not previously available economically at this scale
- Lowers energy, costs and emissions of graphene production
- Higher performance in some applications pristine platelets, no reduction damage, larger size particles
- Talga owned technologies large volume FLG, MLG, GNP and 99.9% Graphitic Carbon (see <u>www.talgaresources.com</u> / announcements and reports / videos)

Graphene Production Techniques Electrochemical Advantages

	Method	Approach	Product type	Flake sizes	Chemical purity, structural uniformity	
1	Liquid Phase Exfoliation	top-down	gnp, Mlg	300-50,000nm	average (some low at wt% O2 groups)	
2	Graphene Oxide reduction	top-down	vFLG	3,000- 20,000nm	below average (high at wt% O2 content)	
3	Electrochemical Exfoliation	top-down	vFLG	500-10,000nm	very good	
4	Chemical Synthesis	bottom-up	FLG , vFLG, MLG, GNP	20-6000nm	good (some low level metal impurities)	

Source: Fullerex - Webinar

Copyright Talga Technologies Ltd, 28.03.2017

- Liquid Phase Exfoliation
- Reduced Graphene Oxide
- Chemical Synthesis
- Electrochemical Exfoliation
- Higher value product range

≻

Operations - Pilot Plant

Pilot test-work well advanced

- **3 phases** to upscaling process Phase 2 just commissioned
- High quality graphene output confirmed, via Key Academic & industrial partners
- ~76% of input carbon converted to graphene
- Capacity scale up continues towards Phase 3
- Product inputs represent the inventory for customer samples
- Plant capacity = 30T of ore from single modular platform, potential to be duplicated

Phase 2 pilot test platform

Portion of graphene coating product for customer test program, Talga Advanced Materials GmbH

Graphene (TalpheneTM) Characterisation

HR-TEM and other tests confirm high quality, 1-4 layer graphene, Lateral Flake size 5-10 microns (Process A- Application A).

Copyright Talga Technologies Ltd, 28.03.2017

Graphene (TalpheneTM) Characterisation

Atomic Force Microscopy (AFM) analysis data confirms:

- Graphene predominantly thin flakes (up to 2-4 nanometres)
- Lateral size of flakes (approx. 100-200 nm Process B-Application B)

Target Markets

Coatings

Corrosion Protection Market Size: \$11B (2013)

- Anti-corrosion & antifouling coatings
- Electric and thermally conductive inks
- Battery and fuel cell coatings
- Current market 40Mt/a

Energy

Batteries & Membranes Market Size: \$24B **Batteries**, \$17B **Membranes**

- Li-ion batteries
- Flow batteries
- Fuel cells
- Solar panels
- Printable batteries and circuits

Market size sources: Reports from NACE, IDTechX, Freedonia, www.corrosion.org, Market and Markets, Future Markets Insight, BCC research, www.energy.gov, www.cam.ac.uk, NGI, CGC, IITB, OCCA, PRA, IconiQ, ECCA, BCF, World Steel Organisation, The Graphene Council

Copyright Talga Technologies Ltd, 28.03.2017

Conductives

Conductive Ink Market Size: \$18B (2015)

- Flexible conductive
 - plastics
- Stronger, lighter plastics and carbon fibre
 - materials
- 3D printing inks

Cement & Concrete Additives Size: \$17B (2016)

- Lighter, stronger cement
- Higher performance insulation materials
- Functional (electrical or thermally conductive) glass & building materials

Products (Functionalised Coatings & Composites)

Protective Coatings & Composite

- zinc expense

Conductive Ink & Sensors

Concrete

- expensive

Energy Storage – Batteries & Fuel cells

• Problem:e.g. coatings need to be thinner, higher performing, Cr(VI) being banned,

• Solution: graphene enhanced anti corrosion coatings – inert, conductive, barrier properties

• e.g.Problem: Expensive incumbents (nano-silver), not flexible, weight of copper alloy wires Solution: graphene conductive inks that are flexible, printable or part of composite matrix

• e.g: Problem: low strength without corrosive rebar or magnetite, heating wires required =

Solution: graphene enhanced concrete with electrical/thermal conductivity, improve performance

• Problem: Fuel cell bipolar plates rely on expensive platinum, membrane efficiency low • Solution: conducting and corrosion resistant graphene membranes in fuel cells and batteries

Cost of Corrosion – Global Economic Impact

Corrosion causes significant costs in infrastructure, maintenance and replacement. Global coatings market = \$120 billion per annum.

United Kingdom	
GDP (2008)	\$2,279 billion
Annual cost of corrosion:	\$70.6 billion
Australia	
GDP (2009)	\$920 billion
Annual cost of corrosion:	\$70.6 billion
USA	
GDP (2007)	\$13,840 billio
Annual cost of corrosion:	\$429 billion

Average of 3% GDP

Reference:

NACE figures: http://events.nace.org/publicaffairs/cocorrindex.asp GDP figures: http://www.economywatch.com/

Copyright Talga Technologies Ltd, 28.03.2017

Hohenzollern Bridge in Cologne, Germany (Source: **Corrosion - by Gretchen A. Jacobson - Materials Performance)**

Alarming corrosion in Eiffel Tower, Paris, France

n

Product – Coatings Market

Fig 1. Paints and Coatings Global Market US\$/annum.

Total Paints and Coatings Market : \$120 Billion

Source: Jan 2016 Valspar Investor Presentation after 2013 Orr & Boss, Kusumgar, Nerlifi & Growney

Fig 2. Paints and Coatings Market Leaders US\$/annum.

Global Leaders by Sales (\$Billion)

Source: Jan 2016 Valspar Investor Presentation & Company reports. * Excludes non-coating sales

Talga Graphene Coatings

Talga Raw Graphite Ore

Copyright Talga Technologies Ltd, 28.03.2017

Talga Few Layer Graphene Coated Metal

Functionalisation of Graphene is key for performance

Sheets of Graphene can be readily functionalized using reactive reagents also different routes e.g. radicals, plasma, fluorine, diazonium salt and nitrene.

> By functionalizing the sheets, sp² hybridised carbon atoms become sp3 hybridised carbon atoms, this allows us to control the electronic properties of Graphene, as well as compatibility current materials.

Copyright Talga Technologies Ltd, 28.03.2017

Processing Graphene into Products

Improved performance can be seen only with correct dispersion

Copyright Talga Technologies Ltd, 28.03.2017

Functionalisation of Graphene for Coating

Graphene Anti corrosion coating: Nanoscale, 7(42) 17879 (2015)

Copyright Talga Technologies Ltd, 28.03.2017

Graphene based coating on steel

Multi Functional Coatings - Customer demand

0.1% additive (nano-sized) in paint matrix

10% additive (micron-sized) in paint matrix

Copyright Talga Technologies Ltd, 28.03.2017

<0.01% additive (high surface area e.g. Graphene) in paint matrix

Protective coatings for Ships, Pipes, Sections...

Acrylic Finish Coat Non Pigmented Epoxy Undercoat Epoxy MIO **Epoxy Sealer Coat** Zinc Rich Epoxy Primer / Zinc Silicate Pre Fab Shot Blasted Steel

Substrate

Durability of protective coating depends on barrier properties

Modern Longs Coating System

Graphene oxide-Thermosets resins O2 & H2O

Water Permeation ~ 46% reduced

Copyright Talga Technologies Ltd, 28.03.2017

Oxygen Permeation ~ 31% reduced

Pre finished Steel - Coil Coatings

Protective coatings

Coatings **Surfaces** Interfaces

Adhesion Science Polymer Chemistry Degradation **Metallurgy Coatings Application**

Copyright Talga Technologies Ltd, 28.03.2017

Differentiated

Products

Corrosion & Current Chrome-based Protection

Copyright Talga Technologies Ltd, 28.03.2017

Graphene Coating Evaluation EIS – Cr(VI) vs Graphene

Graphene Anti corrosion coating: Nanoscale, 7(42) 17879 (2015)

Talga Graphene Coatings- Cr(VI) replacement

Functionalisation/Condensation reaction

Graphene based anticorrosive coatings for Cr (VI) replacement, Nanoscale, September 2015.

Copyright Talga Technologies Ltd, 28.03.2017

Potentiodynamic Polarisation curves

Salt Spray Test (ASTM B117)

Metal treatment-Commercialisation: Chemetall & Talga

Commercial System vs Graphene Pretreatment

Current commercial Cr(VI)

After salt spray

Improved performance over chrome-containing reference Customer trial of metal surface treatment in progress

Copyright Talga Technologies Ltd, 28.03.2017

Graphene functionalised with inhibitor pre-treatment

After salt spray

Talphene^{TR} anti corrosion coating – EIS Evaluation

Without TALPHENE[™] coating

Graphene Anti-corrosion coating: Flatchem, 1 (48) (09/2016)

Graphene as a barrier against ions

Water uptake vs Graphene concentration

Functionalised Graphene as a barrier against corrosion, Flatchem, September 2016.

FlatChem CHEMISTRY OF FLAT MATERIALS

Elsevier Journals, e.g. Flatchem - Special Issue-Industrial applications of Graphene, & 2D Materials Coatings & Inks Q3-2017

Talga Graphene Products Business Strategy

- Plan to manufacture targeted 'fit for purpose' graphene products to complement supply of raw graphene and graphitic materials
- Potential licence income streams with third parties using patented products
- Strategy to realise revenue opportunities during pilot processing stage, prior to full-scale production
- Validation of industrial testing and benchmarking trials to demonstrate tangible outcomes and commercial progress

- Graphene will play an important role in anti-corrosion protective coatings for metals.
- \checkmark Combination of graphene specific anti-corrosion properties and barrier properties enable graphene based coatings to become the future "chrome-free" coatings.
- \checkmark Talga's graphene production process can be scaled up for industrial demand, is low cost and environmentally friendly.
- \checkmark Talga is working with industrial (e.g. Chemetall BASF) partners including a major surface treatment supplier, as well as academic partners to speed up different product technologies.

Acknowledgements

Teams at Talga Resources Ltd (ASX:TLG), Talga Advanced Materials GmbH, Talga Mining Pty Ltd Filial & Talga Technologies (UK) Ltd

IIT Bombay ME & Materials students

Cambridge University – College of Engineering, Cambridge Graphene Centre – Prof Andrea Ferrari team

Tata Steel & Tata Group (Europe & India)

Trial Mining - Sweden

Vittangi trial mining For video see <u>https://www.youtube.com/watch?v=q2Xmz7Buj3A</u> Copyright Talga Technologies Ltd, 28.03.2017