

Defects fingerprints in single layer MoS₂ by *ab initio*-based STM and AFM simulations

Blanca Biel University of Granada Biel@ugr.es

Acknowledgements

Collaborators:

Dr. Yannick Dappe

Financial support:

Ramón y Cajal Fellowship Program

Computational resources:

 \circ Motivation

 \circ Methodology

 $\,\circ\,$ STM simulations of point-like defects

AFM simulations of point-like defects

 \circ Work in progress

Motivation

ARTICLE

Received 31 Aug 2014 | Accepted 15 Jan 2015 | Published 19 Feb 2015

DOI: 10.1038/ncomms7293

OPEN

Exploring atomic defects in molybdenum disulphide monolayers

Jinhua Hong^{1,*}, Zhixin Hu^{2,*}, Matt Probert³, Kun Li⁴, Danhui Lv¹, Xinan Yang⁵, Lin Gu⁵, Nannan Mao^{6,7}, Qingliang Feng⁶, Liming Xie⁶, Jin Zhang⁷, Dianzhong Wu⁸, Zhiyong Zhang⁸, Chuanhong Jin¹, Wei Ji^{2,9}, Xixiang Zhang⁴, Jun Yuan^{1,3} & Ze Zhang¹

• Most common defects:

- PVD: antisites → vacS+Mo, vacS2+Mo
- ME, CVD: vacS, vacS2
- But also: vacMo, vacMo+S, ...
- Different impact on properties (tuning!)
 → sample characterization

Motivation

Open questions...

- Do the STM images change with voltage or distance?
- Are geometrical or electronic effects predominant?
- How strong is the influence of the AFM tip?
- Can we identify or at least discriminate between certain defects by force spectroscopy?
- Can we transfer atoms from tip to sample and vice-versa? (doping, manipulation, ...)

Motivation: selected defects

pristine

Mo vacancy

Mo vacancy+S

Mo vacancy+2S

S vacancy+Mo

S di-vacancy

S di-vacancy+Mo

S vacancy

S di-vacancy+2Mo

Are all defects equivalent (in electronic terms)?

	Clean	V-Mo	V-Mo+S	V-Mo+S2	V-S	V-S+Mo	V-S2	V-S2+Mo	V-S2+Mo2
$E_{\rm g}({\rm eV})$	1.70	0.64	0.60	1.25*	1.0	no gap	0.80	no gap	no gap

Motivation: selected defects

Are all defects equivalent?

	Clean	V-Mo	V-Mo+S	V-Mo+S2	V-S	V-S+Mo	V-S2	V-S2+Mo		V-S2+Mo2
$E_{\rm g}({\rm eV})$	1.70	0.64	0.60	1.25^{*}	1.0	no gap	0.80	no gap		no gap
V-S+Mo				V-S2	2+Mo			V-S2-	+ N	Ao2

• Fully *ab initio* DFT simulations

○ STM: combination of DFT + Keldysh-NEGFs formalism
 → Fireball (localized orbitals)

○ AFM: DFT simulation of tip-sample interaction + force extraction
 → VASP (plane waves)

Scanning Tunneling Microscopy simulations

IOP Publishing

Nanotechnology

Nanotechnology 27 (2016) 105702 (12pp)

doi:10.1088/0957-4484/27/10/105702

Theoretical characterisation of point defects on a MoS₂ monolayer by scanning tunnelling microscopy

C González^{1,2}, B Biel¹ and Y J Dappe²

Theoretical STM model

• Keldysh-Green's functions formalism for STM images

$$H = H_{Tip} + H_{interaction} + H_{Sample} \qquad DFT-LDA FIREBALL code$$
$$J = \frac{4\pi e}{\hbar} \int_{E_F}^{E_F + eV} Tr \left[T_{TS} \rho_{SS}(E) D_{SS}^R T_{ST} \rho_{TT}(E - eV) D_{TT}^A \right] dE$$

J. M. Blanco, F. Flores, and R. Pérez, Prog. in Surf. Sci. **81**, 403 (2006) P. Jelinek *et al.*, Phys. Rev. B 71 (2005) 235101

Theoretical STM model

• Keldysh-Green's functions formalism

STM simulations

STM images:

Determination of atom/defect position \rightarrow geometric effects should dominate (in principle)

bright protrusión ←→ atom closer to tip
dark holes ←→ atom far from tip

- BUT (some systems): actual interplay between geometrical and electronic effects

S atoms 1.51 Å higher than Mo BUT Mo contribution to DOS larger than S's for empty states

predomination of geometry or electronic effects?

Clean monolayer:

(WSxM software)

- Constant height mode
- 4.0 Å, **4.5 Å**, 5.0 Å
- No changes with distance
- Voltage range ~ -2V 3.4V

Clean monolayer:

(WSxM software)

- Constant height mode
- 4.0 Å, **4.5 Å**, 5.0 Å
- No changes with distance
- Voltage range ~ -2V 3.4V

Triangular pattern

STM simulated images

Clean monolayer:

(WSxM software)

- Constant height mode
- 4.0 Å, **4.5 Å**, 5.0 Å
- No alterations with distance
- Voltage range ~ -2V 3.4V

V = -0.1 (occupied states)

Triangular pattern

V = +1.9 (empty states)

Asymmetric hexagonal pattern

STM simulated images

• Experimental confirmation?

STM simulation of atomic defects in MoS₂: Mo monovacancy

- Atoms displacements < 0.1 Å \rightarrow dangling bonds in neighboring S and Mo atoms
- Strong modifications of the DOS → localised states associated with the unsaturated bonds in the midgap (p character)
- Decrease of gap size ~1 eV

STM simulation of atomic defects in MoS₂: Mo monovacancy

Mo monovacancy

 Images @ +1.9 V (empty states) → three brilliant spots in the neighboring S atoms, not directly over the S

(*p*-character of the S dangling bond \rightarrow opposite direction to the original bond)

Images @ −1.9 V (filled states) → dangling bond effect reduced → relocation over S atoms

STM simulation of atomic defects in MoS₂: S antisite

Mo monovacancy with substitutional S

V= + 1.9 (high voltage) V= + 0.5 (low voltage)

- Subs-S on same plane as Mo \rightarrow lower contribution to current than other S
- Asymmetric position of subs-S \rightarrow sharp peak in DOS of far S neighbor \rightarrow change of contrast
- V = -1 V \rightarrow same contrast as for V = + 0.5 V

Strong dependence on applied voltage

STM simulation of atomic defects in MoS₂: 2-S antisite

Mo monovacancy with 2 substitutional S

- 2 subs-S no connected to Mo atoms but to S atoms:
 - → S-subs atoms in a semioccupied state (sharp peak)
 - → bright at low V
 → dark at high V, recovering pristine image

STM simulation of atomic defects in MoS₂: S mono- and di-vacancies

S monovacancy

V= + 1.9

V = +1

S divacancy

Dependence on applied voltage → contrast change (dark hole or bright protrusión)

For **S or Mo vacancies** and **S substitutionals** in the Mo vacancy

STM simulation of atomic defects in MoS₂: S mono- and di-vacancies

S divacancy - experiment

DOI: 10.1021/acs.jpcc.6b02073 J. Phys. Chem. C 2016, 120, 20798–20805

Experimental confirmation ?

S divacancy – our simulation

STM simulation of atomic defects in MoS₂: Mo antisites

S monovacancy with substitutional Mo **S divacancy with substitutional Mo** V = +1.9V = +1.9Mo 🔺 Mo-sus Mo-sub 🔶 Mo-b SOD 2 DOS -2 energy(eV) S divacancy with 2 substitutional Mo: -2 energy(eV) V = + 1.9🔶 Mo-b 🔺 Mo-sus **Bright protrusión** DOS (regardless of voltaje) One or two **Mo atoms in an empty S** site energy(eV) ("metallic" defects) Universidad

de Granada

STM simulations: conclusions

- Do the STM images change with voltage or distance?
- Are geometrical or electronic effects predominant?

- No dependence on distance
- Possible change of contrast in the pristine monolayer
- Defects → dependence on voltage/type of defect
 - Vacancies and S substitutionals in the Mo vacancy
 → imaged as large protrusions or dark holes, depending on the applied voltage
 - One or two Mo atoms in an empty S site ('metallic defects')
 → bright protrusion independently of the applied bias

C. González, BB, Y. Dappe, Nanotechnology 27 (10), 105702

Atomic Force Microscopy simulations

Reactivity Enhancement and Fingerprints of Point Defects on a MoS₂ Monolayer Assessed by *ab Initio* Atomic Force Microscopy

C. González,^{*,†,‡} Y. J. Dappe,[‡] and B. Biel[†]

Theoretical AFM model

DFT calculations: VASP code

- Initial distance: 5 Å
- $\,\circ\,$ Steps of 0.25 Å
- $\circ~\mbox{Relaxation}$ of whole system in each step
- Range: 2 Å 5 Å

Non-contact AFM (FM-AFM)

$$\Delta f = \frac{f_0}{2\pi kA_0} \int_0^{2\pi} F_{TS} \left[d + A_0 + A_0 \cos \varphi \right] \cos \varphi d\varphi$$

R. García and R. Pérez Surf. Sci. Rep. 47 (2002) 197

Theoretical AFM model

DFT calculations: VASP code

- \circ Two tips:
 - Cu (very reactive)
 - Si (less reactive)
- Analysis of tip-sample force interaction curves
 - Most attractive point → force minimum value
 - Type of interaction → tip-sample distance at minimum force
- \circ Comparison of force curves \rightarrow discrimination between defects?

- Most attractive point for the Cu tip: over a S atom
 - Mo more visible than S at ~ 2.5 Å (due to interaction with neighboring S atoms!)
- ➔ contrast change between Mo and S with distance

- Most attractive point for the Cu tip: over a S atom
 - Mo more visible than S at ~ 2.5 Å (due to interaction with neighboring S atoms!)
- ➔ contrast change between Mo and S with distance

- Most attractive point for the Si tip: over a Mo atom
- Need to introduce vdW interaction to get attractive forces
- No contrast change expected

- Most attractive point for the Cu tip: over a S atom
 - Mo more visible than S at ~ 2.5 Å (due to interaction with neighboring S atoms!)
- ➔ contrast change between Mo and S with distance

- Most attractive point for the Si tip:
 over a Mo atom
- Need to introduce vdW interaction to get attractive forces
- No contrast change expected

- Tip interaction → analysis of charge density:
 - Bond between Cu tip and S atom
 - No bond between Si tip and S atom

Most attractive point for a Cu tip approaching a S atom

Most attractive point for a Si tip approaching a S atom

Cu tip:

• Most attractive force \rightarrow over a **Mo vacancy**

- Capture of apex atoms
- Transfer of atoms from sample to tip

Universidad de Granada

Cu tip:

tipCu	$F_m(nN)$	$d_m(A)$	$\Delta h_{Cu}(\text{\AA})$	$\Delta h_{Mo/S}(\text{\AA})$	$\Delta Chg_{Cu}(e)$
vacMo	-3.42	1.75	-0.90	-	-0.55
vacS	-2.07	1.75	-0.63	-	-0.34
vacS2	-1.85	1.75	-0.63	-	-0.33
Mo	-0.88	2.50	-0.20	+0.18	-0.11
vacMo+S	-1.56	2.75	-0.33	+0.09	-0.33
vacS2+Mo	-1.07	3.00	-0.15	+1.30	-0.39
S	-1.00	3.00	-0.25	+0.38	-0.12
vacS+Mo	-1.01(-1.51)	3.50(3.75)	-0.22	+0.46	-0.39
vacS2+Mo2	-0.93(-1.18)	3.75(3.75)	-0.26	+0.34	-0.28
vacMo+S2	-1.11	4.25	-0.29	+0.27	-0.23

The monolayer is more semiconducting than the metallic tip
→ significant charge transfer takes place from the tip to the substrate

Si tip:

- Most attractive force
 → over a 2S+2Mo vacancy
- Capture of a S atom in the S2-subs case

Si tip:

tipSi	$F_m(nN)$	$d_m(A)$	$\Delta h_{Si}({ m \AA})$	$\Delta h_{Mo/S}(\text{\AA})$	$\Delta Chg_{Si}(e)$
vacS2+Mo2	-1.80(-2.55)	4.00	-0.60	+0.60	+0.49
vacS+Mo	-1.55(-2.17)	4.00	-0.60	+0.49	+0.39
\mathbf{S}	-0.03	4.00	-0.00	+0.00	+0.03
vacMo+S2	-0.11	3.75	-0.01	-0.00	+0.14
vacS2+Mo	-1.36	3.50	-0.25	+1.32	+0.20
Mo	-0.07	3.50	-0.01	+0.00	+0.06
vacMo	-0.80	2.50	-1.20	-	+0.68
vacMo+S	-0.81	2.25	-0.78	-0.28	+0.47
vacS2	-1.05	1.75	-1.03	-	+0.48
vacS	-0.86	1.50	-1.03	-	+0.46

The monolayer is more metallic than the **semiconducting tip** → significant charge transfer takes place from the substrate to the tip

How to interpret the information?

		J \	
tipCu	$F_m(nN)$	$\mathrm{d}_m(\mathrm{\AA})$	
vacMo	-3.42	1.75	Γ
vacS	-2.07	1.75	
vacS2	-1.85	1.75	
Mo	-0.88	2.50	
vacMo+S	-1.56	2.75	
vacS2+Mo	-1.07	3.00	
S	-1.00	3.00	
vacS+Mo	-1.01(-1.51)	3.50(3.75)	
vacS2+Mo2	-0.93(-1.18)	3.75(3.75)	
vacMo+S2	-1.11	4.25	

@ 3 Å : pristine S
 BUT: vacMo force ~2nN @ 3 Å → competing with

'pristine' S !

- Need to check for force curve
- Metallic defects at long distances

tipSi	$F_m(nN)$	$d_m(Å)$
vacS2+Mo2	-1.80(-2.55)	4.00
vacS+Mo	-1.55(-2.17)	4.00
\mathbf{S}	-0.03	4.00
vacMo+S2	-0.11	3.75
vacS2+Mo	-1.36	3.50
Mo	-0.07	3.50
vacMo	-0.80	2.50
vacMo+S	-0.81	2.25
vacS2	-1.05	1.75
vacS	-0.86	1.50

- S network deduced from:
 - vacS position at short distances
 - vacS+Mo, vacS2+Mo2 at large distances
 UQT Universidad

de Granada

AFM simulations: conclusions

- How strong is the influence of the AFM tip?
- Can we identify or at least discriminate between certain defects by force spectroscopy?
- Can we transfer atoms from tip to sample and vice-versa? (doping, manipulation, ...)

- Great reactivity enhancement in the MoS₂ monolayer in the presence of defects
 metal-semiconductor junction between the tip and the MoS₂ substrate
- Atoms transference from/to tip-sample → tool to locally modify the electronic environment

C. González, Y. Dappe, BB, J. Phys. Chem. C 120 (30), 17115-1712

CO tip on GB1

Si tip on GB2

Universidad de Granada

Cu tip on GB3

Universidad de Granada

Thank you for your attention!

