

Raman signatures of SLG dispersed in *degassed* water ("eau de graphene")

George Bepete¹, Carlos Drummond¹, Alain Pénicaud¹, <u>Eric Anglaret²</u> Centre de Recherche Paul Pascal, CNRS Bordeaux, France Laboratoire Charles Coulomb, Université de Montpellier, France

Why studying SLG in water ?

Flow/friction of water between GR flakes Falk et al, Nanolett. 2010

Aqueous precursors for GR-based films/materials @extremetech.com

Harvesting energy from waterflow over GR *Dhiman et al, Nanolett. 2011*

How to disperse/stabilize SLG in water ?

→ Dissolution of graphite intercalation compounds (GIC) in polar aprotic solvent Drummond & Penicaud., Acc. Chem. Res. 2013

→ +Transfer and stabilization of graphenide ("SLG anions") in degassed water Bepete et al., Nature Chemistry, 28 Nov. 2016

Stabilizing SLG in water

Evidences of SLG in "eau de graphene"

SLG in *degassed* water (no surfactant/organic additives)

c=0.16 g/L≈400 m²/L , pH=8

Typical flake size 100 nm-1 μ m

Bepete et al., Nature Chemistry, 28 Nov. 2016

Raman signatures of "eau de graphene"

Metastable in *degassed* water (c=0.16 mg/mL, pH=8) No surfactant/organic additives

Intensity of SLG bands comparable to that of OH bending Relative intensities of SLG increase at low laser energies

Raman signatures of SLG in "eau de graphene"

Bepete et al, J. Phys. Chem. C 2016

Raman signatures of SLG in "eau de graphene"

FLG in sodium cholate SLG in EdG stabilized aqueous suspensions 2.33 eV 2.33 eV Intensity (a.u.) G,D' **2D** D 1.94 eV .94 eV ntensity (a.u.) 1.58 eV .58 eV Water 1.17 eV 1.17 eV Water absorption absorption 1600 1200 2000 2400 2800 1200 1500 1800 2400 2700 2100 Raman shift (cm⁻¹) Raman shift (cm⁻¹)

Intrinsic signature of (an ensemble of) SLG in water :

a narrow and intense 2D band

Bepete et al, J. Phys. Chem. C 2016

Raman signatures of SLG in "eau de graphene" Single layerness

Intrinsic signature of (an ensemble of) SLG in water : a symmetric, narrow and intense 2D band $27 \text{ cm}^{-1} < \text{FWHM}_{2D} < 30 \text{ cm}^{-1}$ $2.7 < \text{A}_{2D}/\text{A}_{G} < 3.5$

SLG in "eau de graphene" Defects

Exposition of graphenide to moisture \rightarrow functionnalisation by –H or –OH groups $\rightarrow I_D$ is dominated by the contribution of point defects L_D =8-10 nm (300-400 ppm)

Upshift, broadening and decrease of 2D \rightarrow interlayer interactions I_D/I_G decreases ($I_D/I_{D'}$ as well) \rightarrow curing of point defects

Bepete et al, J. Phys. Chem. C 2016

I_D in annealed films is dominated by edge defects

 $< L_{flake} >_{measured} \approx 300 \text{ nm} \approx < L_{flake} >_{actual}$

SLG in "eau de graphene" Doping and strain ?

Bepete et al, J. Phys. Chem. C 2016 * Con

* Considering a dispersion of 97 cm⁻¹.eV⁻¹ for 2D

Single layerness Narrow, intense 2D band \rightarrow FWHM_{2D}=28±2 cm⁻¹

Defects

D band dominated by sp³ defects in EdG $\rightarrow L_D \approx 8-10$ nm (300-400 ppm) D band dominated by edge defects in annealed films $\rightarrow <L_a > \approx 300$ nm

Electronic and mechanical interactions

(Heterogeneous ?) compressive strain (≈-0.1%)

Weak doping (<4.10¹² cm²)

Coming soon...

Microscopic origin of strain ? Influence of charge density and pH ? Extend results to larger flakes