Synthesis, structural characterization and electronic properties of V₂CT_x MXene nanosheets

Lu Shi^{1,2}

Thierry Ouisse², Aurélie Champagne¹, Jean-Christophe Charlier¹, Benoît Hackens¹

 Institute of Condensed Matter and Nanosciences, Université catholique de Louvain
1348 Louvain-La-Neuve, Belgium
Université Grenoble-Alpes, CNRS, LMGP, F-38000 Grenoble, France

lu.shi@uclouvain.be

A new family of 2D materials has emerged, consisting of transition metal carbides, nitrides, and carbonitrides, also known as MXenes. The vast majority of MXenes known to date have been produced by selectively etching AI from Alcontaining MAX phases.^[1] During the the MXene surface etching process, acquires terminating functional groups, which why they are is commonly designated as $M_{n+1}X_nT_x$, where T_x represents surface terminating groups such as -O, -OH, and/or -F, as shown in Fig1(a).^[2-3]

Herein, two-dimensional V_2CT_x nanosheets were obtained by chemical exfoliation of as-grown V₂AIC single crystals ^[4] in 40% HF solution at room temperature. The influence of etching time on the synthesis and structural evolution were studied. The paper-like structure of asprepared V₂CT_x nanosheets was confirmed by SEM and micro-Raman, as shown in Fig1(b,c).

Following a mechanical exfoliation, thin flakes have V₂CT_x been successfully transferred on Si/SiO₂ substrates. In order to measure electrical transport of astransferred V₂CT_x flake, e-beam lithography techniques were applied to pattern electrical contacts on top of the flakes, as shown in Fig1(d). Electrical properties of V₂CT_x flakes were obtained for a range of temperature between 4K and 300K temperature range were tested. Individual V₂CT_x flakes exhibits metallic behavior. Maanetotransport down to low temperature allows to extract intrinsic properties, which charge carrier are compared with bulk MXene and MAX phases values. DFT calculation were performed and compared with the experimental results.

References

- [1] M. Naguib, et al., Adv. Mater., 26(2014), 992.
- [2] J. Halim, et al., Appl. Surf. Sci., 362(2016), 406.
- [3] M. R. Lukatskaya, et al., Science,
- 341(2013),1502.
- [4] L. Shi, et al., Acta Mater.,83(2014),304.

Figure 1: (a) Structure of terminated V₂CT_x MXenes (b)SEM image of V₂AIC after etching 96h, showing the highly delaminated paper-like layered structure V₂CTx; (c) Raman spectra of V₂CT_x nanosheets on the Si/SiO₂ substrates;(4) Electrical contact pattern of V₂CT_x nano device