Negative differential resistance in 2-dimensional MoS₂/BN/MoS₂ heterostructure

Presenting Author: Shoujun Zheng^{1,3} Co-Authors:

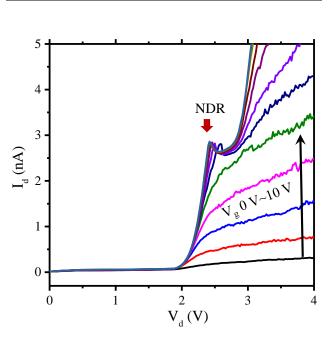
Fucai Liu², Liu Zheng², Hong Jin Fan^{1,3}

¹Centre for Disruptive Photonic Technologies, Nanyang Technological University, 637371, Singapore,

²Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore

³School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore

Contact@E-mail	
Szheng003@e.ntu.edu.sg	


Abstract (Century Gothic 11)

Resonant tunneling diode based on graphene/BN/graphene heterostructure has been reported by L. Britnell et al¹. The peakto-valley ratio of negative differential resistance (NDR) is about 4 at 6 K. It was predicted that the peak-to-valley ratio based on 2-dimensional transitional metal chalcogenides is much higher than the one based on graphene². Here, we fabricated a heterostructure $MOS_2/BN/MOS_2$ and observed NDR in this device at room temperature. The peak position of the NDR is gate-tunable. However, the peak-to-valley ration is guite small, which may result from ntype MoS₂ and twist of different layers.

References

 L. Britnell, R. Gorbachev, A. Geim, L. Ponomarenko, A. Mishchenko, M. Greenaway, T. Fromhold, K. Novoselov and L. Eaves, *Nat Commun*, 2013, 4, 1794. P. M. Campbell, A. Tarasov, C. A. Joiner, W. J. Ready and E. M. Vogel, *Acs Nano*, 2015, 9, 5000-5008.

