Synthesis of high-quality 2D transition metal dichalcogenides

Jiadong Zhou

Fucai Liu, Junhao Lin, Wu Zhou, Zheng Liu Centre for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore Jzhou012@e.ntu.edu.sg

Two dimensional transition metal dichalcogenides have attracted intense attention because of its unique properties. However, synthesis of TMDs in the past few years only focus on Mo(W)S(Se)₂. Few reports about the synthesis of monolayer tellurides and other 2D materials such as In₂Se₃ and so on. The tellurides and atomically thin transitional metal ditellurides like WTe₂ and MoTe₂ have triggered tremendous research interests because of their intrinsic nontrivial band structure. They are also predicted to be 2D topological insulators and type-II Weyl semimetals. Here, we demonstrate controlled synthesis of high-quality and atom-thin tellurides with lateral size over 300 µm. We found that the as-grown WTe₂ maintains two different stacking sequences in the bilaver, where the atomic structure of the stacking boundary revealed is scanning by transmission electron microscope (STEM). The low-temperature transport measurements revealed a novel semimetal-to-insulator transition in WTe₂ layers and an enhanced superconductivity in few-layer MoTe₂. This work paves the way to the synthesis of atom-thin 2D TMDs and also quantum spin Hall devices. References

- Jiadong Zhou, Fucai Liu, Junhao Lin, Zheng Liu. Adv. Mater., (2016). DOI:10.1002/adma.201603471
- [2] Jiadong Zhou, Zheng Liu. Nano Lett., 2015, 15 (10), pp 6400–6405

Figures

Figure 1: Optical geometries of WTe₂ and MoTe₂ monolayers

Figure 2: Transport in different thicknesses of WTe₂ and superconductivity in few layered MoTe₂