A Graphene-Channel Terahertz Light Emitter Transistor

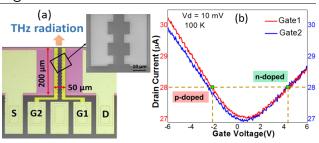
Deepika Yadav¹ Junki Mitsushio¹, Youssef Tobah², Gen Tamamushi¹, Takayuki Watanabe¹, Alexander A. Dubinov³, Maxim Ryzhii⁴, Victor Ryzhii^{1,5} and Taiichi Otsuji¹

¹Research Inst. of Elect. Comm., Tohoku Univ., Sendai, Japan

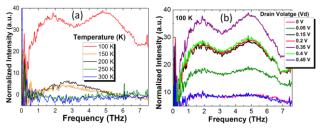
²Dept. E.C.E., University of Texas, Austin, TX, USA ³Inst. for Physics of Microstructures, RAS, Russia ⁴Dept. C.S.E., University of Aizu, Aizu-Wakamatsu, Fukushima, Japan

⁵Inst. of Ultra High Freq. Semi. Electronics, RAS, Moscow, Russia

otsuji@riec.tohoku.ac.jp


We report on experimental observation of amplified spontaneous terahertz (THz) emission from 1 to 7.6 THz at 100K in a population-inverted Distributed Feedback-Dual Gate-Graphene Channel Field Effect Transistor (DFB-DG-GFET) by carrier-injection [1, 2], demonstrating the birth of a new type of THz light-emitting transistors.

Graphene synthesized by the thermal decomposition of a C-face 4H-SiC substrate [3] was used to fabricate the GFET having a SiN gate insulator. Fig.1(a) shows the device image, a pair of tooth-brush-shaped gate electrode was patterned to form a DFB laser cavity in which the active gain area and corresponding gain coefficient are spatially modulated. With complementary biased gate1 ($V_{g1} < 0$) and gate2 ($V_{g2} > 0$) (Fig.1(b)), the carrier population can be inverted at intermediate the channel region by forward-biasing the drain-source voltage $V_{d.}$ The background blackbody radiation was first observed under the zero-bias condition using a 4.2K cooled Si bolometer, which was subtracted from the one observed under biased conditions. A relatively intense emission at 100K than at any other higher temperatures (Fig. 2(a)) was observed in 1-7.6 THz range peaking at around ~5 THz when the device was population-inverted. The device also exhibited peculiar doublethreshold-like behavior with respect to the current-injection level (Fig. 2(b)), which may be due to the carrier overcooling effect [2] as was discussed in [4]. A careful design of DFB cavity (higher DFB modulation and a larger number of DFB periods) is expected to result in single mode CW THz lasing with an output power of the order of ~10 μ W as observed in another recent work of ours [4].


References

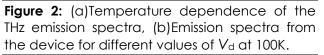

- [1] V. Ryzhii, et al., JAP, 110 (2012) 094503.
- [2] T. Otsuji *et al.*, IEEE J. STQE, 19 (2013) 8400209.
- [3] H. Fukidome *et al.*, APL,101 (2012) 041605.
- [4] G. Tamamushi et al.,74th DRC: Annual Dev. Research. Conf. Dig., 225 (2016).

Figure 1: (a)Optical and SEM image of the fabricated device; grating period, the effective refractive index, the Bragg wavelength, and the principal mode are 12 μ m, 2.52, 60.5 μ m, and 4.96 THz, respectively (b) Measured *I*-V characteristics for Gate1 and Gate2. The square dots are typical points for symmetric electron/hole injection (V_{g1}=-2.28 V, V_{g2}=4.56 V).

