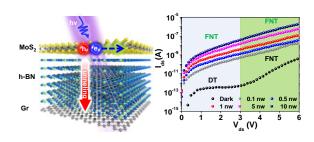
Tuning carrier tunneling in van der Waals heterostructures for ultrahigh detectivity

Quoc An Vu

Young Hee Lee, Woo Jong Yu

IBS Center for Integrated Nanostructure Physics, Institute for Basic Science, Sungkyunkwan University, Suwon 440-746, Korea.

quocan@skku.edu


In this study, we demonstrated a highly sensitive photodetector with a MoS₂/h-BN/graphene heterostructure, by inserting a h-BN insulating layer between graphene electrode and MoS₂ photo-absorber, the dark-carriers were highly suppressed by the large electron barrier (2.7 eV) at the graphene/h-BN junction while the photocarriers were effectively tunnelled through small hole barrier (1.2 eV) at the MoS₂/h-BN junction. With both high photocurrent/dark ratio current (>105)and high photoresponsivity (180 AW-1), ultrahigh photodetectivity of 2.6×10^{13} Jones was obtained at 7 nm thick h-BN, about 100 ~ 1000 times higher than that of previously reported MoS₂-based devices.

References

[1] Vu, Q. A.; Lee, J. H.; Nguyen, V. L.; Shin, Y. S.; Lim, S. C.; Lee, K.; Heo, J.;

Park, S.; Kim, K.; Lee, Y. H.; et al. Nano Lett. 2016, acs.nanolett.6b04449.

Figures

Figure 1: Schematic of the MoS₂/BN/graphene heterostructure photodetector (left) for photon absorber/selective hole tunneling layer/bottom electrode, respectively. Laser was illuminated on the top of the device. Red numbers indicate thickness of h-BN in the MoS2/h-BN/graphene photodetectors. I–V characteristic of the device (right) under the dark and various illumination intensities of 405-nm laser