Chemical beam deposition of TiS₂ thin films for operando XPS studies of Na electrochemical intercalation

Dino Tonti¹

Christian Pettenkofer² Wolfram Jaegermann³

¹ICMAB-CSIC, Campus UAB, Bellaterra, Cerdanyola del Vallès (Barcelona), Spain

²Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, Berlin, Germany

³Technische Universität Darmstadt, Materials Science Department, Surface Science Division, Jovanka-Bontschits-Str. 2, Darmstadt, Germany

dino.t@csic.es

Lithium-ion batteries are the technology that enabled todays' mobile world, and are being introduced in larger scale applications such as electric vehicles and grid storage. These perspectives open the possibility of supply shortages in front of a surge of lithium demand. Larger devices also provide stronger safety requirements. Sodium ion batteries are regarded as the most promising alternative chemistry that can satisfy a demand increase by orders of magnitude and provide additional safety. Both Li- and Na-ion batteries are based on the intercalation reaction, however the larger Na⁺ ion size restricts the choice of host materials, being layered materials the most obvious class.

TiS₂ is a layered dichalcogenide already considered in early alkali batteries [1] that recently showed excellent electrochemical properties in optimized Na-ion batteries [2]. In this paper we will present the optimization of the synthesis in ultra-high vacuum of TiS₂ thin films from metal-organic sources. The effect of precursors and their partial pressure, substrate and temperature, has been studied by XPS and mass spectroscopy.

The resulting films are composed by mainly upright platelets of 50-100 nm diameter and 5-10 nm thick. These are used for the study, by XPS, of the effects on the TiS₂ electronic structure by Na evaporation or electrochemical intercalation. Similar changes are observed in both cases; however in the latter case correlation with the cell voltage allows to quantify the impact of electronic rearrangements on the energy storage mechanism [3].

References

- [1] M. S. Whittingham, Science 192 (1976) 1126
- [2] Y. Liu, H. Wang, L. Cheng, N. Han, F. Zhao, P. Li, C. Jin, and Y. Li, Nano Energy 20 (2016) 168
- [3] D. Tonti, C. Pettenkofer, and W. Jaegermann, J. Phys. Chem. B 108 (2004) 16093

Figures

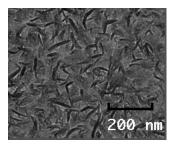


Figure 1: TEM micrographs for TiS_2 thin films deposited on a carbon-coated grid