Waveguide-integrated high mobility modulators and photodetectors based on hBN-graphene-hBN heterostructures

Bernat Terrés i Güerri^{1*}

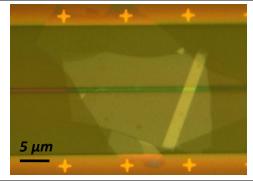
V. Sorianello², M. Lundeberg¹, K.J. Tielrooij¹, D. Davydovskaya¹, T. Galán¹, G. Navickaite¹, L. Banszerus^{3,4}, C. Stampfer^{3,4}, M. Romagnoli² and F.H.L. Koppens¹.

- ¹ ICFO The Institute of Photonic Sciences, Av. Carl Friedrich Gauss 3, 08860 Castelldefels, Spain.
- ² Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT). Via Moruzzi, 1 56124 Pisa, Italy.
- ³ JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, 52056 Aachen, Germany.
- ⁴ Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, 52425 Jülich, Germany.

*bernat.terres@icfo.eu

Photodetectors and optical modulators are key components in today's communication systems^[1] for which graphene promises a broadband response, high switching rates and an extremely small footprint. In this work we report on numerical simulations and experimental results on waveguide-integrated high mobility modulators and photodetectors based on hexagonal boron nitride (hBN) encapsulated graphene devices. Such hBN-graphene-hBN devices have been showing high values of charge carrier mobility and low levels of electrical doping, both in transport^[2] as in optical^[3] measurements.

Our numerical simulations on high-mobility hBN-graphene-hBN waveguide-integrated devices reveal achievable responsivity values up to 0.5-1A/W, a frequency response of ~40 GHz and a noise equivalent power (NEP) figure of ~10-11 W. $\sqrt{(Hz)}$, for a contact resistance of 0.1 k Ω .µm and


mobilities of 50 000 cm²/(V.s) at room temperature.

Owing to recent advances in the fabrication techniques^[4], we achieved largescale double hBN-graphene-hBN devices with an active area up to 400 µm². These large scale devices (see Fig. 1) allow for the systematic study of the devices' dimension. Specifically, we investigate the effect of the source-to-drain distance and the length of the active absorption area on the responsivity and absorption values of the graphene photo-detectors and modulators, respectively. The experimental results are compared to our simulation results.

References

- [1] G.T. Reed et al., Nature Photon. 4 (2010) 518-526.
- [2] L. Banszerus et al. Nano Lett. 16 (2), (2016) 1387–1391.
- [3] M.B. Lundeberg et al. Nature Materials (2016) 4755.
- [4] F. Pizzocchero et al. Nature Comm. 7 (2016) 11894.

Figures

Figure 1: hBN-graphene-hBN stack transferred over an optical waveguide. The active area between graphene and waveguide has a length $>15 \mu m$.