Spin texture for graphene layer induced by proximity to Bi₂Se₃

Presenting Author Kenan Song¹

Co-Authors David Soriano¹, Roberto Robles¹, Aron Cummings¹, Pablo Ordejón¹, Stephan Roche^{1,2}

¹Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain

²ICREA, Institució Catalana de Recerca i Estudis Avançats, 08070 Barcelona, Spain

Contact@E-mail: kenan.song@icn2.cat

Abstract

Due to the effect of spin-momentum locking, topological insulators (TI) have attracted a lot of attention for their application to spintronic devices [1,2]. However, the spin lifetime for TIs is very short, which limits their applicability.[3] On the other hand, the spin lifetime in graphene can be quite large (more than 10 ns) [4] but graphene itself does not exhibit spinmomentum locking around the Γ point because of the weak spin-orbit coupling (SOC). Recent studies pointed out that proximity to a TI could enhance the SOC strength in graphene and produce a topologically-protected state which İS similar to that in TIs [5,6].

In this work, one monolayer of graphene with a $\sqrt{3} \times \sqrt{3}$ supercell was laid on top of a slab of Bi₂Se₃ with a thickness of six quintuple layers in order to examine the electronic structure and the spin texture induced in graphene. From DFT simulations, it was found that the spin texture in the graphene layer is quite similar to that of pure Bi₂Se₃ in the higher energy windows (fig a. and c.); while those in lower energy window (fig b. and d.) is analogue of Rashba-type texture with some warping relatively large and out-of-plane components. This work could serve as a guideline to experimentally achieve a measurable spin-to-charge (or charge-tospin) conversion in а graphene/Tl heterostructure via the Edelstein (or inverse Edelstein) effect [7,8].

References

- [1] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82 (2010) 3045
- [2] Fu Liang and C. L. Kane, PRL 100 (2008) 096407

[3] C. Cacho, et. al., PRL **114** (2015) 097401 [4] Marc Drögeler et al., arXiv:1602.02725 [cond-mat.meshall]

- [5] Igor Popov, et al., PRB 90 (2014) 035418
- [6] Paengro Lee, et al., ACS Nano 9 (2015) 1086
- [7] J.-C. Rojas-Sánchez et al., PRL 116 (2016) 096602
- [8] K. Vaklinova et al., DOI: 10.1021/acs.nanolett.6b00167.

Electronic structure of the 6QLs Bi₂Se₃/graphene heterostructure. a, b - band structure and red color indicates the projection onto the graphene layer within different energy window; c and d - top view of spin texture corresponding to graphene band in a and b respectively.