Gate tuneable ultrafast charge transfer in graphene/MoS₂ heterostructures

G. Soavi¹, D. De Fazio¹, S. R. Tamalampudi¹, D. Yoon¹, E. Mostaani¹, A. R. Botello¹, S. Dal Conte², G. Cerullo², I. Goykhman¹, A. C. Ferrari¹

1. Cambridge Graphene Centre, University of Cambridge, 9, JJ Thomson Avenue, Cambridge, CB3 0FA, UK

2. Dipartimento di Fisica, Politecnico di Milano, P.zza Leonardo da Vinci 32, Milano, 20133, Italy

gs544@cam.ac.uk

We report ultrafast pump-probe graphene/MoS₂ measurements а on demonstrate heterostructure and sub exciton picosecond dissociation and charge transfer from MoS₂ to graphene, one order of magnitude faster than in type II two-dimensional heterostructures [1]. The process can be controlled by applying an external gate and shifting the Fermi level of the graphene layer. For pump-probe measurements we excite the gate controlled graphene/MoS₂ heterostructure at 400 nm, well above the MoS₂ bandgap [2], and probe the normalized differential transmission changes ($\Delta T/T$) of the MoS₂ first exciton (A exciton) at 660 nm with time resolution~200fs. In this configuration, MoS₂ acts as the absorbing material for visible wavelengths while graphene is the electron scavenger [3], as depicted in Fig. 1. We dependence observe strong of recombination dynamics in MoS₂ upon gate voltage biasing and graphene doping. Specifically, higher p-doping in araphene increases the built in potential difference at the graphene/MoS₂ interface (Fig. 1a), enhances the rate of electrons transfer from MoS₂ to graphene (Fig. 2) and as a result reduces the A excitons lifetime in MoS₂. On the other hand, if graphene is ndoped, the built in field is weakened resulting in slower electrons dynamics (Fig.

1b and 2). Charge transfer in layered heterostructures was previously reported [1, 4, 5]. Here we demonstrate that this process can be electrically controlled by external gating. This mechanism is key for applications such as photodetectors [3] and non-volatile memories [6].

References

- [1] S. B. Homan *et al.*, Nano Letters, 17 (2017) 164
- [2] K. F. Mak et al., Phys. Rev. Lett. 105 (2010) 136805
- [3] D. De Fazio *et al.*, ACS Nano, 10 (2016) 8252
- [4] J. He et al., Nat. Comms, 5 (2014) 5622
- [5] X. Hong et al., Nat. Nanotech., 9 (2014) 682
- [6] S. Bertolazzi et al., ACS Nano, 7 (2013) 3246

Figure 1: Sketch of the MoS₂ to graphene electron transfer as a function of graphene doping.

