Scalable synthesis of WS₂ on Graphene: an all 2D spintronic platform

Antonio Rossi^{†‡}

Holger Büch[†], Stiven Forti[†] and Camilla Coletti^{†§}

⁺ Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza S. Silvestro 12, 56127 Pisa, Italy

‡ NEST-Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy

§ Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy

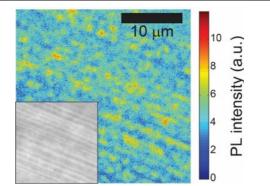
antonio.rossi@sns.it

Abstract

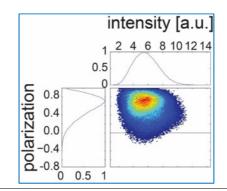
By exhibiting a measurable bandgap and exotic valley physics, atomically-thick tungsten disulfide (WS₂) offers exciting prospects for optoelectronic applications. The synthesis of continuous WS₂ films on other two-dimensional (2D) materials would greatly facilitate the implementation of novel all-2D photoactive devices [1-3]. We have demonstrated the scalable growth of WS_2 on graphene via a chemical vapor deposition (CVD) approach. Spectroscopic and microscopic analysis reveal that the film is bilayer-thick, with local monolayer inclusions [4]. Photoluminescence measurements show a remarkable conservation of polarization at room temperature peaking 74% (Fig. 1-2) for the entire WS₂ film. Furthermore, we present a scalable approach for the synthesis of vertical Van der Waals heterostructures which show a clear epitaxial relation (Fig. 3), opening the route for a wafer scale production for optical spin-injection devices and polarization-resolved photodetectors [5].

References

[1] M. Chhowalla et. al., Nat. Chem., 5 (2013), 263.


[2] H.-P. Komsa, A. V. Krasheninnikov, Physical Review B, 88 (2013), 085318.

[3] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Nature Nanotech. 7 (2012), 699–712


[4] Rossi et. al. 2D Materials, 3 (2016), 3

[5] Martin Gmitra and Jaroslav Fabian, Phys. Rev. B 92 (2015), 155403

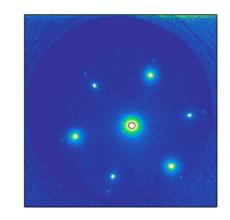

Figures

Figure 1: PL intensity map of on WS₂ on graphene. Intensity is higher on buffer layer (non quenching) areas.

Figure 2: Intensity vs Polarization histogram. The conservation polarization peak is ~74%.

Figure 3: Low Energy Electron Diffraction pattern showing a clear epitaxial relation between WS2 and Gr.