High sensitive CVD graphene-based gas sensors operating under environmental conditions

Filiberto Ricciardella¹

Sten Vollebregt¹, Tiziana Polichetti², Brigida Alfano², Ettore Massera² and Pasqualina M. Sarro¹.

¹Delft University of Technology, Feldmannweg 17, 2628 CT, Delft, The Netherlands ²ENEA, Piazzale Enrico Fermi 1, I – 80055 Portici (Napoli), Italy

filiberto.ricciardella@gmail.com

Graphene has been widely demonstrated to be a perfect candidate for gas sensing applications thanks to the structural and electronic properties [1]. In this work, we present calibrated graphene-based sensors able to detect NO₂ in the concentration range 0.1 – 1.5 ppm (parts-per-million) and operating under environmental conditions, i.e. room temperature (RT) and 50% relative humidity (RH). With a limit of detection (LOD) down to 150 ppb (Fig. 1), the findings are comparable with the best performances reported in the literature [1]. The chemiresistive devices, realized by the innovative transfer-free process [2], were demonstrated to work in the aforementioned conditions, keeping RH at 50% [1]. Here, the behavior of sensors exposed to large RH variation were further analysed. Devices having same graphene-bar length (206 µm) and different width (2, 5, 10 μ m) (inset of Fig. 1), were overall electrically characterized and tested and the obtained findings will be presented. The RH effects were proven to be negligible with respect to the sensors performance (Fig. 2). Therefore, for ranges of RH variations shorter than 30%, the current responses were demonstrated to be related only to the graphene-analyte interaction.

References

 F. Ricciardella, S. Vollebregt, T. Polichetti, B. Alfano, E. Massera, P.M. Sarro, Proceedings of IEEE Sensors Conference 2016, ISBN: 978-1-4799-8287-5, 697-699 [2] S. Vollebregt, B. Alfano, F. Ricciardella, A. J. M. Giesbers, Y. Grachova, H. W. van Zeijl, T. Polichetti, P. M. Sarro, Journal, IEEE 29th International Conference on MEMS (2016) 17-20

Figure 1: calibration curve of graphene-based chemi-resistive sensor towards NO₂. Right-down inset shows one device geometry (length=206 μ m, width=5 μ m). Current dynamic behavior of sensor upon exposure to 4 min-long gas pulses (left-up inset). The current is normalized to the value I₀ during the gas inlet of the first pulse exposure.

