Resolving nanometer-scale variations of doping and strain in single layer MoS₂ Antonios Michail^{1,2}, Dimitris Anestopoulos¹, Nick Delikoukos^{1,2}, **John Parthenios¹**, Costas Galiotis^{1,3} Konstantinos Papagelis^{1,4} FORTH / ICE-HT, Stadiou str. Platani GR-26504, Patras, Greece ²Department of Physics, University of Patras, GR-26504, Patras, Greece ³Department of Chemical Engineering, University of Patras, GR-26504, Patras, Greece ⁴Department of Physics, University of Patras, GR-26504, Patras, Greece jparthen@iceht.forth.gr 2D single-layer materials are characterized by an inherent extremely low bending rigidity and therefore are prone to nanoscale structural modifications due to substrate interactions. It is well established that such interactions can induce excess charge concentration, conformational ripples, and residual mechanical strain [1]. In this work, we employed spatially resolved Raman and photoluminescence (PL) images to investigate strain and doping inhomogeneities in a single layer MoS₂ crystal exfoliated onto a SiO₂ substrate. Due to the lack of relevant calibration data, we have determined the sensitivities and the corresponding Gruneisen parameters of the E' and A₁' Raman bands of monolayer MoS₂ upon biaxial strain application up to ~ 0.7% [2,3]. We found that correlations between the spectral parameters of the most prominent Raman bands A₁' and E' enable us to decouple and quantify strain and effects charge doping (fig. methodology is successfully applied to other MoS₂ crystals, either exfoliated or fabricated chemical vapor deposition, different substrates (SiO₂ or PMMA) (Fig. 2). comparison Moreover, in with topography, we show that the spatial distribution of the position of the A-trion PL peak is strain sensitive and its linewidth can capture features smaller than the laser spot size. The proposed methodology may have implications in the development of high- quality devices based on 2D materials since structural and electronic modifications affect considerably their carrier mobility and conductivity. ## References - [1] Neumann, C. et al. Nat. Commun., 6, (2015),8429. - [2] Androulidakis, C. et al. Sci. Rep. 5, (2015), 18219. - [3] Michail A., et al., Appl. Phys. Lett., 108(17), (2016), 173102 **Figures** **Figure 1:** (a) Optical image of the exfoliated monolayer MoS₂ deposited onto a Si/SiO₂ wafer (scale bar, 2 μ m), (b) $\Delta\omega$ map of the monolayer area, (c) Correlation plot of FWHM(A₁') vs Pos(A₁') and (d) AFM topography of the single layer MoS₂ crystal. **Figure 2:** $Pos(A_1')$ vs Pos(E') for single layer MoS2 exfoliated onto a polymeric substrate (green squares) and produced by CVD on SiO_2 substrate (blue diamonds). The red circles represent the data points of this work. The straight lines correspond to the ϵ -n system and represents iso-strain (n) and iso-doping (ϵ) conditions.