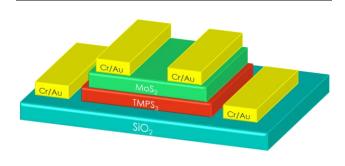
Improved electrical characteristic of MoS₂ on twodimensional TMPS₃

DaYea Oh

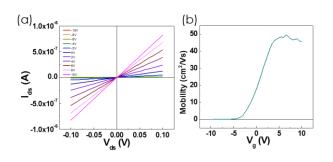
Duk Hyun Lee¹⁾, Sung Min Lee²⁾, Je Guen Park²⁾ and Bae Ho Park¹⁾

- Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
 Seoul National University, 1 Gwanak-ro.
- 2) Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea

ybnormar@gmail.com


Molybdenum disulfide (MoS₂) has been studied for complementary of graphene because of its intrinsic bandgap and high mobility. While atomic thickness and dangling- bond-free surface can make us to consider MoS₂ as a promising candidate for short channel devices, these properties make the deposition of high-k dielectrics on MoS₂ challenges, which results in the threshold voltage instability induced by high-density traps and make hard to deposit on transistors [1,2].

Given that graphene on high-k SrTiO₃ epitaxial thin film get influence and protect from the charges nearby layer [3], we deposited MoS₂ on TMPS₃, which is another 2D material and shows various high-k dielectrics dependent on constructed transition metal. Also, controlling thickness of TMPS₃ through mechanical exfoliation can facilitate the improvement of electrical characteristics of MoS₂. These results can be explained by not only mitigating adverse effect from SiO₂ substrate but also enhancement of electrical properties of MoS₂ when integrated with high-k materials. We fabricate metal/TMPS₃/MoS₂ structure using mechanical exfoliation and dry transfer method. As gate voltage is applied from -100V to 100V progressively, improved current flow is shown in results. Also, enhanced mobility about 48cm²/Vs is represented in our study.


References

- [1] Jingli Wang et al., Advanced Materials, 37 (2016) 8302-8308
- [2] Qingkai Qian et al., Scientific Reports, 6:27676 (2016) 1-9
- [3] Jeongmin Park et al., Nano Letters, 16 (2016) 1754-1759

Figures

Figure 1: The schematic of TMPS₃/MoS₂ on SiO₂ substrate

Figure 2: (a) I_{ds} - V_{ds} curve of MoS_2 as applied gate voltage from -100V to 100V and (b) mobility of MoS_2 on $FePS_3$