High quality factor mechanical resonators based on WSe₂ monolayers

Nicolas Morell

Antoine Reserbat-Plantey¹, Ioannis Tsioutsios¹ Kevin G. Schädler¹, François Dubin², Frank H.L. Koppens¹, Adrian Bachtold¹

¹ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain ²INSP, Paris 6 Jussieu, Paris, France

Nicolas.morell@icfo.es

Suspended monolayer transition metaldichalcogenides (TMD) are membranes that combine ultra-low and mass exceptional optical properties, makina them intriguing materials for optomechanical applications. However, the low measured quality factor of TMD resonators has been a roadblock so far. Here, we report an ultrasensitive optical readout of monolayer TMD resonators (Fig. 1) that allows us to reveal their mechanical properties at cryogenic temperatures. We find that the quality factor of monolayer WSe₂ resonators greatly increases below room temperature, reaching values as high as 1.6.10⁴ at liquid nitrogen temperature and 4.7.10⁴ at liquid helium temperature (Fig. 2). This surpasses the quality factor of monolayer graphene resonators with similar surface areas. Upon cooling the resonator, the resonant frequency increases significantly due to the thermal contraction of the WSe₂ lattice. These measurements allow us to experimentally study the thermal expansion coefficient of WSe₂ monolayers for the first time. High Q-factors are also found in resonators based on MoS2 and MoSe₂ monolayers. The high quality-factor found in this work opens new possibilities for coupling mechanical vibrational states to two-dimensional excitons. valley pseudospins, and single quantum emitters, and quantum opto-mechanical for experiments based on the Casimir interaction.

References

- Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F., *Phys. Rev. Lett.* (2010), *105*, 136805.
- Bunch, J. S.; van Der Zande, A. M.;
 Verbridge, S. S.; Frank, I. W.; Tanenbaum,
 D. M.; Parpia, J. M.; Craighead, H. G.;
 McEuen, P. L., Science (2007) 315, 490–493.
- [3] Çakır, D.; Peeters, F. M.; Sevik, C. Appl. Phys. Lett. (2014), 104, 203110.

Figures

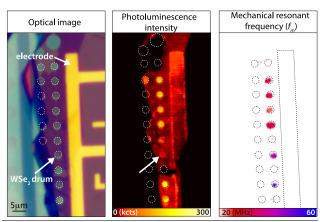
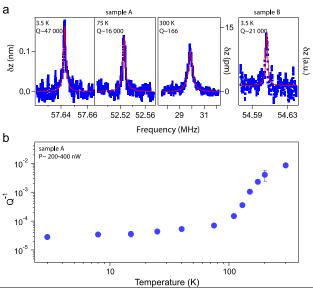



Figure 1: Optical Image, PL map and mechanical frequency of TMD resonators.

