Controlled CVD synthesis of single- and fewlayered MoS₂ crystals

Antonios Michail^{1, 2}

Dimitris Anestopoulos¹ Nick Delikoukos^{1, 2} John Parthenios¹ Costas Galiotis^{1, 3} Konstantinos Papagelis^{1, 4} ¹FORTH / ICE-HT, Stadiou str. Plantani GR-26504, Patras, Greece ²Department of Physics, University of Patras, GR-26504, Patras, Greece ³Department of Chemical Engineering, University of Patras, GR-26504, Patras, Greece ⁴Department of Physics, University of Patras, GR-26504, Patras, Greece kpapag@upatras.gr

Two dimensional MoS₂ has been intensively studied over the past few years due to its mechanical. excellent electrical and optical properties [1]. Reliable and efficient wafer-scale CVD production methods are prerequisite for the fabrication of 2D-MoS₂ based devices. A variety of scalable CVD routes to fabricate 2D-MoS₂ have been proposed in the past with the most common involving the sulfurization of MoO_3 [1]. Taking place in atmospheric pressure and requiring only MoO₃ and elemental sulfur as precursors, it is by far one of the simplest methods used to fabricate 2D-MoS₂. Yet, one of its main disadvantages is that the uniformity and nucleation density of the produced crystals is difficult to control. Although other synthetic routes that offer a greater degree of control exist, they tend to be more complex requiring low pressure systems and potentially more expensive or even toxic precursors such as H_2S [2,3].

In this work we show that it is feasible to fabricate single- and few-layered MoS₂ crystals in a simple, one-step atmospheric pressure CVD synthesis using Na₂MoO₄ and elemental sulfur as precursors. Na₂MoO₄ is widely available, water soluble and relatively safe, commonly used as a fertilizer. The thickness and size of the crystals can be controlled by the deposited amount of Na₂MoO₄ precursor. The fabricated crystals studied by means of X-ray are photoelectron spectroscopy, atomic force microscopy, micro-Raman and microphotoluminescence spectroscopies, and are compared with single-layer 2D-MoS₂ crystals that were exfoliated or transferred to other substrates. Through this comparison various spectral differences are found to arise from residual mechanical strain and/or doping levels induced by the interaction with the supporting substrate as well as the fabrication procedure. These strain and doping levels are quantified using an optical analysis published recently [4].

Figure 1 Photoluminescence intensity image of a CVD MoS₂ monolayer. The dark spots are few-layered seed crystals. The average photoluminescence peak position for the monolayer is 1.80(2) eV.

References

- R. Ganatra and Q. Zhang, ACS Nano, 8(5) (2014), p. 4074
- [2] K.-K. Liu, et al., Nano Letters, 12(3) (2012), p. 1538
- [3] Y. Yu, et al., Scientific Reports, 3 (2013), p. 1866
- [4] A. Michail, et al. , Applied Physics Letters, 108(17) (2016), p. 173102