Grazing incidence X-rays diffraction: a powerful tool for 2D materials studies

A. Marty^{1,2}, M. T. Dau^{1,2}, C. Vergnaud^{1,2}, C. Beigné^{1,2}, M. Jamet^{1,2}, C. Alvarez^{1,3}, H. Okuno^{1,3}, P. Pochet^{1,3}, E. Bellet-Amalric^{1,3}, G. Renaud^{1,3} ¹Université Grenoble Alpes, F-38000 Grenoble France

²INAC-SPINTEC, CEA/CNRS, F-38000 Grenoble, France

³INAC-MEM, CEA, F-38000 Grenoble, France

Alain.marty@cea.fr

Layered, transition metal dichalcogenides (TMD), exhibit fascinating properties when the thickness is reduced to atomic size. For example, a transition from an indirect to a direct band gap can appear making them attractive in electronics verv and optoelectronics [1]. The synthesis of high quality 2D TMD on large area is required to meet the microelectronics standards. For this purpose, we developed Se-based 2D TMDs (MoSe₂, WSe₂, PtSe₂ etc.) grown by molecular beam epitaxy [2] on various Determining substrates. the crystalline orientations, strains, and grain sizes is of great importance to understand properties and to improve the growth. The in-plane arazina incidence x-rays diffraction technique [3] is well suited for the structural analysis of these layered materials on large surface. Our measurements were performed using laboratory set-up а equipped with a rotating anode (45kV @ 200mA). Two in-plane scans types were performed: i) reciprocal radial scans along directions of the substrate in order to determine in-plane lattice parameters, strains and domain sizes. ii) Azimuthal scans performed at Bragg angles found in the radial scans in order to investigate in-plane orientation and mosaic of the 2D layers with respect to the substrate. An example of such measurements is shown on the figures below for a multilayer WSe₂/PtSe₂ grown on a Pt(111)/sapphire(0001). The results for the various TMD/substrates couples will be discussed, showing a large variety of epitaxial growths.

References

- Wang Q. H. et al. Nature Nanotech, 7 (2012) 699
- [2] Dau M.T. et al., Appl. Phys. Lett., 110 (2017) 011909
- [3] Gu X. et al., ChemSusChem, 7 (2014) 416

Figures

Figure 1: in-plane radial scans along <h00> and <hh0> sapphire substrate directions

Figure 2: in-plane azimuthal scans for various Bragg reflections of the substrate and of the over-layers