Ambipolar Field-effect Transistors of Graphene / WSe₂ Heterostructures

Minju Lee¹

Da Yea Oh¹, Gwang Taek Oh¹, Jin Sik Choi¹, Dae Yool Jung², Sung Yool Choi², Jung Tae Nam³, Keun Soo Kim³ and Bae Ho Park¹

¹Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea ²Korea Advanced Institute of Science and Technology, Daejun 305-701, South Korea ³Department of Physics and Graphene Research Institute, Sejong University, Seoul, 05006, South Korea

leeminjoo5063@gmail.com

As reported in many studies, graphene and WSe₂, one of the transition metal dichalcogenides (TMDs), shows high carrier mobility and high on/off current ratio, respectively. As both materials have ambipolar property, those are applied to electronics and optoelectronics.

Recent studies have succeeded in fabricating flexible devices based on the junction of graphene and pentacene, which show ambipolar characteristics and high on/off current ratio ^[1]. In addition, it is reported MoS₂/WSe₂ that the heterojunction device has hiah photoresponsivity and is highly applicable to solar cells^[2].

In this study, we fabricated heterojunction device of graphene and WSe₂ in order to enhance electrical characteristics. We fabricated the junction device using chemical vapor deposition (CVD)-grown graphene and mechanically exfoliated WSe₂. The CVD graphene grown on Cu foil was transferred to a SiO₂ substrate using Poly vinyl alcohol - Polydimethylsiloxane (PVA-PDMS) method. The few layer WSe₂ is transferred using dry transfer onto the graphene on SiO₂ substrate. The junction device showed ambipolar property, high carrier mobility and higher on/off ratio than pure graphene device. Therefore, the graphene/WSe₂ junction offers a promising ambipolar transistor, utilizing both electrons and holes as carriers, in next-generation circuits.

References

- Gwangtaek Oh et al., Graphene/Pentacene Barristor with Ion-Gel Gate Dielectric: Flexible Ambipolar Transistor with High Mobility and On/Off Ratio, ACS Nano, (2015) 7515-7522
- [2] Amirhasan Nourbakhsh et al., Transport properties of a MoS₂/WSe₂ Heterojunction Transistor and Its Potential for Application, Nano Letters, 16, (2016), 1359-1366

Figure 1 The schematic of graphene/WSe₂ on SiO₂ substrate

Figure 2 The I-V characteristics of (a)graphene and (b)WSe₂