Tunneling field effect transistor based on MoTe₂/MoS₂ van der Waals heterojunction

Bondae Koo^{1,2}

Gwang Hyuk Shin¹, Hamin Park¹, and Sung-Yool Choi^{1,*}

¹School of Electrical Engineering, Graphene/2D Materials Research Center, KAIST, 291 Daehakro, Yuseong-gu, Daejeon, 34141, Korea

²System LSI, Samsung Electronics, 1 Samsung-ro, Giheung-gu, Yongin-Si, Gyeonggi-do, 17113, Korea

sungyool.choi@kaist.ac.kr

Two-dimensional stacked semiconductors provide a superior material structure for band to band tunneling devices due to sharp band edge as well as their atomically flat thickness^[1]. Among two-dimensional materials, MoTe₂ has a narrow band gap of 0.8 eV with small electron affinity and ptype characteristic^[2]. In contrast, MoS₂ has a large electron affinity with a bandgap of 1.2 eV (ML) and n-type characteristic^[3]. Therefore, a heterojunction of MoTe₂ and MoS₂ may have an appropriate band alignment in terms of band to band tunneling.

In this work, we demonstrate a tunneling field effect transistor based on the MoTe₂/MoS₂ van der Waals heterojunction. As a gate dielectric, 10nm-Al₂O₃ was deposited by ALD. Ti and Pd were used as S/D contact metal for MoS₂ and MoTe₂ respectively, which have appropriate work function in order to reduce contact resistances by lowering Schottky barrier heights^[3,4].

Consequently, the MoTe₂/MoS₂ tunneling field effect transistor shows on/off current ratio of > 10⁴. In the I_D -V_D curve, the tunneling currents were mesured at the reverse drain bias, while NDR-like behaviors were observed at the forward drain bias in room temperature. This phenomenon distinctly appeared as a function of the gate bias.

References

- [1] Tania Roy et al., Applied Physics Letters, 8 (2016) 083111
- [2] Nihar R. Pradhan et al., ACS Nano, 6 (2014) 5911-5920
- [3] Wei Liu et al., 2013 IEEE International Electron Devices Meeting (2013) 19.4.1-19.4.4
- [4] Saptarshi Das et al., Applied Physics Letters, 10 (2013) 103501

Figure 1: The illustration of a device structure

Figure 2: I_D - V_D electrical characteristics as a function of gate bias