Carbon-heteroatom bond formation by ultrasonic spray chemistry for energy storage system

Hyun-Tak Kim
Tae-Hyuk Kwon

Ulsan National Institute Science and Technology, 50, UNIST-gil, Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan, Republic of Korea
tamtak91@gmail.com

Abstract
The direct formation of C-N and C-O bonds, while essential in chemical/biological processes and energy storage systems, remains technologically challenging1-3. We describe a simple and ultrafast method to form these bonds in reduced graphene oxide (RGO) and carbon nanotubes (CNTs) by ultrasonic chemical reaction for application in energy storage systems. Electrodes of nitrogen- or oxygen-doped RGO (N-RGO or O-RGO, respectively) are fabricated by the collision between N\textsubscript{2} or O\textsubscript{2} carrier gas molecules and ultrasonically activated RGO (Figure 1). The doped products exhibited much higher capacitance than the undoped material (133, 284, and 74 F g-1 for O-RGO, N-RGO, and RGO, respectively). Furthermore, doped two-dimensional RGO and one-dimensional CNT materials are deposited layer-by-layer by ultrasonic spray to form three-dimensional porous electrodes with very high specific capacitances (62.8 mF cm-2 and 621 F g-1 at 10 mV s-1 for N-RGO/N-CNT with 1/1 (v/v)), high cycling stability, and structural flexibility (Figure 2).

References