Potential application of iron nanoparticles encapsulated in graphene (INPEG)

Oleksiy V. Khavryuchenko^a

Serhii Knutarev,ª Gerardo Algara-Siller,b Bartłomiej Andrzejewski,° Oleksiy Synytsa,ª

^a Research and Development Department, TMM LLC, Volodymyrska str. 49a, 01601 Kyiv, Ukraine

 Inorganic Chemistry Department, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6 D 14195, Berlin, Germany
Institute of Molecular Physics Polish Academy

of Sciences, Mariana Smoluchowskiego str. 17 60-179 Poznań, Poland alexkhavr@gmail.com

4. Additive to lubricants.

CCINPs can provide all rolling friction preferences of fullerene with much lower price and higher mechanical stability.

5. Catalysts support.

Defective graphenic surface of CCINPs provide a number of sites for grafting of catalytically active groups. Moreover, the course of reaction might be affected by magnetic field via iron core.

6. Magnetic transport.

CCINPs can be used as "trolleys" to carry drugs to the tumours using external magnetic field.

Carbon-covered iron nanoparticles (CCINPs) containing 3-8 nm iron nanoparticles encapsulated in graphene (INPEG) and 40-80 nm iron nanoparticles covered with defective carbon layers can be produced by facile one-stage plasma synthesis. Both CCINPs and INPEG demonstrate superperamagnetic properties Material can be dispersed and to some extent stabilized in oil and alcohol media, which opens an avenue for a series of potential applications.

1. **Magnetic and electroconductive inks.** As iron nanoparticles are protected from oxidation at ambient temperatures by graphene layers, CCINPs can be used as much cheaper substitute of silver in conductive inks for various applications.

2. Metallization of carbon surfaces.

CCINPs can combine affinity to hydrophobic surfaces like carbon fibers with acceptable conductivity.

3. Additives to plastics.

Low weight combined with moderate conductivity can make CCINPs-filled plastics a good competitor to metals in electric devices.