Large-Area CVD Growth of Two-Dimensional Semiconductor Using Sublimation of Metal Films

Sojung Kang

Seung Min Lee, Yong Soo Cho, Gwan-Hyoung Lee*

Department of Material Science and Engineering, Yonsei University, Seoul, 03722, Korea

gwanlee@yonsei.ac.kr

Several two dimensional (2D) transition metal dichalcogenides (TMDs), especially MoS₂, have emerged as promising layered semiconducting materials for advanced electronic materials. [1] For fabrication of high-performance 2D-based device, large area 2D materials are highly required. In the conventional chemical vapor deposition (CVD) synthesis of TMD materials, solid powders (such as MoO₃, WO₃, and S, Se) are employed as precursor. [2] Because of random deposition of powder on the target substrate, uniform growth of layered materials cannot be easily achieved. Proximity supply of MoO₃ powder [3] or direct sulfurization of ALD Mo film [4] can be applied as an effort to solve these limitations. In this work, thin transition metal film is employed as uniform metal precursor and sulfur was supplied by flowing H₂S gas. Transition metal is sputtered onto a source substrate. A target substrate is placed upside down above the source substrate with distance. Both substrates are heated with a flow of H₂S gas for sulfurization.

As a result, high-quality 2D TMD films were obtained in large scale. This method shows a great potential for large-area growth of variable 2D semiconductors such as MoS₂, WS₂, and WSe₂, etc.

References

- [1] B. Radisavljevic *et al.*, Nat. Nanotechnol., 6 (2011) 147
- [2] R. Gatensby et al., Appl. Surf. Sci., 297 (2014) 139
- [3] M. O'Brien *et al.*, Sci. Rep., 4 (2014) 7374
- [4] Y. Lee et al., Nanoscale, 6 (2014) 2821

Figures

Figure 1: Schematic diagram of the proximity CVD growth of MoS₂. Target substrate is put upside down above source substrate with distance.

Figure 2: Raman and PL spectra of synthesized MoS₂ using Mo film and drop-casted MoO₃ powder as metal precursor.