Lateral Heterostructure of Graphene and MoS₂ for Performance Enhancement of MoS₂ FET

Woonggi Hong¹

Gi Woong Shim¹, Sang Yoon Yang¹, Dae Yool Jung¹, and Sung-Yool Choi^{1,*}

¹School of Electrical Engineering, Graphene/2D Materials Research Center, KAIST, 291 Daehakro, Yuseong-gu, Daejeon, 34141, Korea

sungyool.choi@kaist.ac.kr

We report the synthesis of graphene-MoS₂ lateral heterostructure and its utility in the perspective of field effect mobility. To heterostructure achieve a lateral of graphene and MoS₂, ICP-CVD grown single-layer graphene film was transferred onto SiO₂/Si substrate using metal-etchingfree transfer process^[1], followed bv photolithography for its patterning. Subsequently, MoS₂ was synthesized by a CVD method using powder precursors at atmospheric pressure. Durina the successive annealing for the synthesis of MoS₂ in the presence of the patterned graphene, passivated edges of graphene were reactivated^[2] and predominately acted as nucleation sites for MoS₂.

Because lateral growth of MoS₂ from graphene edges should follow kinetic control^[3], MoS₂ was synthesized at relatively low temperature, where the vertical growth of MoS₂ on graphene was suppressed due to a large activation energy. We interpret this growth aspect of MoS₂ from graphene edge in terms of a growth mechanism based on classical nucleation kinetics.

We fabricated MoS₂ FETs with graphene source/drain electrodes from the lateral heterostructure. The FETs based on graphene-MoS₂ heterostructure show 5.2 times and 1.3 times increased field effect mobility, in comparison with as-grown MoS₂ and transferred MoS₂ FETs, respectively. References

- [1] Sang Yoon Yang et al., Small, 2 (2015) 175-181
- [2] Kun Chen et al., ACS Nano, 10 (2015) 9868-9876
- [3] Anupum Pant et al., Nanoscale, 7 (2016) 3870-3887

Figures

Figure 1: Optical image of synthesized graphene-MoS₂ heterostructure via CVD

Figure 2: Field effect mobility from various types of MoS₂ channel