## Resonance Raman Spectroscopy of 3D and 2D Niobium Diselenide

## Heather M. Hill

Angela Hight Walker and Albert Davydov

National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, United States

## heather.hill@nist.gov

Niobium diselenide (NbSe<sub>2</sub>) is a metallic transition metal dichalcogenide with a charge density wave state below 33.5 K [1] and a superconducting state below 7.2 K in bulk [2]. In this work, we examine the excitation wavelength dependence of the Raman modes of NbSe<sub>2</sub>. In NbSe<sub>2</sub> the three principal Raman modes are the A<sub>1g</sub>, an out of plane vibration of the selenium atoms, E<sub>2g</sub>, an in plane vibration of the niobium and selenium atoms, and the soft mode, a twophonon second order scattering process. We investigate the intensity, Raman shift, and FWHM of these three Raman modes as a function of polarization and excitation energy from 1.6 eV to 2.7 eV. We find that the  $A_{1g}$  mode has a peak intensity when excited by longer wavelengths in the visible range. Conversely, the E<sub>2g</sub> mode has a peak intensity when excited by shorter wavelengths in the visible range. A change in the relative intensity of the  $A_{1g}$  and  $E_{2g}$ vibrational modes with excitation wavelength has been observed previously in semiconducting molybdenum disulphide  $(MoS_2)$  [3]. As in this previous work on  $MoS_2$ , we relate the symmetries of the vibrational modes with the band structure using reflectance contrast spectroscopy. We find surprising similarities between the band structure of NbSe<sub>2</sub> and MoS<sub>2</sub>. Finally, we present the thickness dependence of the reflectance contrast and Raman spectra of NbSe<sub>2</sub>. Understanding the symmetries of Raman modes and the band structure is especially important for NbSe<sub>2</sub> which undergoes major band structure changes

when transitioning to the charge density wave phase and superconducting phase.

## References

- Wilson, J. A., Di Salvo, F. J., Mahajan, S., Adv. Phys., 32 (1974) 882
- [2] Soto, F., et al., Physica C, 460 (2007) 789
- [3] Carvalho, B. R., Malard, L. M., Alves, J. M., Fantini, C., Pimenta, M. A., Journal, Issue (Year) page



**Figure 1:** Raman spectra of bulk NbSe<sub>2</sub> for four different excitation wavelengths. The Raman spectra have been normalized to the highest value in range and vertically offset for clarity.



Figure 2: Relative intensity of the  $E_{2g}$  and  $A_{1g}$  Raman modes of bulk NbSe<sub>2</sub> as a function of wavelength.