Unique magnetic and spintronic behaviours of various 2D atom-thin layers

Junji Haruyama

Faculty of Science and Engineering, Aoyama Gakuin University 5-10-1 Fuchinobe, Sagamihara, Kanagawa, Japan 252-5258

J-haru@ee.aoyama.ac.jp

Spin-based phenomena in various two-dimensional (2D) atom-thin layers are attracting significant attention. In the talk, first, I present magnetisms arising from edges of graphene [1], few-layer black phosphorus (BP) [2], and hexagonal boron-nitride (hBN) [3]. I create low-defect nanomesh (NM) structures, consisting of honeycomb like array of hexagonal pores, with specified pore-edge atomic structure (i.e., zigzag type) on individual layers. Interestingly, hydrogen-terminated graphene NM (H-GNM) shows flat-band ferromagnetism, while it disappears in oxygen-terminated GNM (O-GNM) [1]. On the other hand, O-BPNM exhibits huge large ferromagnetism due to ferromagnetic spin coupling of edge O-P bonds, whereas it disappears in H-BPNM [2]. O-hBNNM shows small ferromagnetism due to edge O-N bonds, while it disappears in H-hBNNM [3]. These are also highly sensitive to annealing temperatures to form zigzag pore edge. These open a considerable avenue for realizing 2D atom-thin flexible magnetic and spintronic devices, fabricated without using rare-earth magnetic atoms. Latest observation of edge magnetism for few-layer molybdenum disulfide (MoS2) NM will be also demonstrated.

Second, I will briefly show introduction of Rashba-type spin-orbit interaction (SOI) into graphene realized by the out-of-symmetry breaking only through much light hydrogenation (~0.1%) using specified electron beam (EB) resist [4]. Symmetric internal-effective magnetic field of the SOI unique to graphene induces spin phase coherence in weak localization in the hydrogenated graphene. Voltage-controlled spintronics in graphene must open doors to novel physics and applications for topological insulator and computation on Majorana Fermions.

As another issue, I will also show creation of the world-thinnest Schottky junction based on semiconductor(2H)/metal(1T) transition of few-layer MoS2, realized only by irradiating EB [5]. This EB top-down patterning opens the possibility to fabricate in-plane lateral heterostructure FETs and LSI circuits.

References


