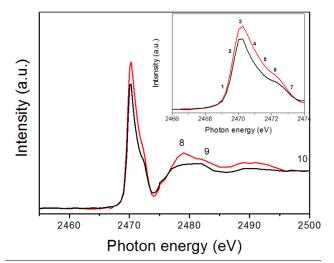
Dynamic and Static Charge Transfer Investigation in two dimensional MoS₂/Graphene and MoS₂/SiO₂ Heterostructures: A spectroscopy combination Approach.

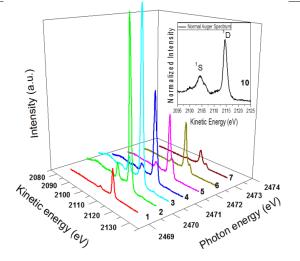
D. G. Larrude¹

Y. Garcia-Basabe², F. C. Vicentin³, E. C. Romani⁴, G. J. M. Fechine¹, E. C. de Oliveira¹, E. A. T. de Souza¹, G. Eda⁵

¹MackGraphe, Mackenzie Presbyterian University, São Paulo, Brasil.
²UNILA, Foz do Iguaçu, Brasil.
³LNLS - CNPEM, Campinas, Brasil.
⁴Departamento de Física, PUC-Rio, Brasil.
⁵Department of Physics, NUS, Singapore.


dunieskys.larrude@mackenzie.br

Abstract


In this work we performed for the first time charge transfer dynamics characterization MoS₂/graphene in MoS_2/SiO_2 and heterostructures using the core hole clock (CHC)method within the framework of synchrotron light based resonant Auger spectroscopy (RAS) around sulfur absorption K edge. The results show that charge transfer in atomically thin MoS₂/graphene for electron excited from \$1s to 3p unoccupied electronic states is 2 times faster than MoS₂/SiO₂ heterostructure. We found that transfer between fast electron MOS₂ monolayer and graphene substrate are associated with energy position of \$1s-3p transitions above the graphene Fermi level and the high density of empty electronic states of graphene layers. The results obtained from CHC method were confirmed bv other non-dynamic techniques spectroscopy such as photoluminescence (PL) and Raman.

References

- D. Menzel, et al., Chem. Soc. Rev., 37, 2212, (2008).
- [2] D. G. Larrude, et al., RSC Advances, 5, 74189, (2015).

Figure 1: S-K edges NEXAFS spectra of MoS₂/SiO₂/Si (black) and MoS₂/Graphene/SiO₂/Si (red) heterojunctions collected at 45° incidence angle. The inset show a zoom at resonance peaks numbering the photon energies used to obtain S-K L_{2,3} L_{2,3} RAS spectra.

Figure 2: S-K L_{2,3}L_{2,3} RAS spectra measured at photon energies labeled as 1-7 in S1s-NEXAFS spectrum for MoS₂/SiO₂/Si sample. The non-resonant Auger spectra collected at photon energy called 10 is show as inset.

This work was partially supported by Brazilian agencies: FAPESP and LNLS.