Commensurability oscillations in graphene

Martin Drienovsky
Jonas Joachimsmeyer, Ming-Hao Liu, Takashi Taniguchi, Kenji Watanabe, Klaus Richter, Dieter Weiss, and Jonathan Eroms

1Institute of Experimental and Applied Physics, University of Regensburg, Germany
2Institute of Theoretical Physics, University of Regensburg, Germany
3National Institute for Materials Science, Tsukuba, Japan.

martin.drienovsky@physik.uni-regensburg.de

At low perpendicular magnetic fields, a periodically modulated 2DEG exhibits 1/B-periodic commensurability oscillations (COs) of the longitudinal magneto-resistance R_{xx}, first observed by Weiss et al. [1]. Their minima can be described by the condition $2R_c = (\lambda - 1/4)a$, where R_c is the cyclotron radius, a the superlattice period and λ an integer index number.

We report on the first experimental observation of COs in a 1D graphene superlattice, employing a locally acting few-layer graphene patterned bottom gate and a graphene-hexagonal boron nitride heterostructure transferred on top. The interplay of two adjustable gate voltages V_p and V_g of the patterned- and global back gate, respectively, gives rise to a widely tunable potential modulation. The appearance of COs in the unipolar transport regime of this superlattice system suggests that the mean free path exceeds several lattice periods. The CO-minima coincide with the predicted positions for a purely electrostatic, small potential modulation. Moreover, our measurements confirm strong robustness of the COs in graphene with respect to temperature [2].

References

Figures

Figure 1: AFM-image of the few-layer graphene bottom gate prior to the transfer of the graphene-hBN heterostructure

Figure 2: Commensurability oscillations in graphene at $V_p = 2.1$ V and $V_g = 25$ V. The blue arrows mark the predicted minima for a periodic electrostatical modulation. Above 1T, superimposed Shubnikov-de Haas oscillations start to become visible.