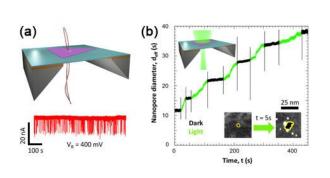
Monolayer WS₂ nanopores for DNA translocation with light-adjustable diameters

Gopinath Danda¹

Paul Masih Das¹ Yung-Chien Chou¹ Jerome T. Mlack¹ William M. Parkin¹ Carl H. Naylor¹ Kazunori Fujisawa² Tianyi Zhang² Laura Beth Fulton¹ A T Charlie Johnson¹ Mauricio Terrones² Marija Drndic¹

¹University of Pennsylvania, 209 S 33rd Street, Philadelphia, Pennsylvania, USA ²The Pennsylvania State University, University Park, Pennsylvania, USA


gdanda@seas.upenn.edu

Abstract

Two-dimensional materials are promising for a range of novel applications, as well as attractive testbeds for probing the physics of low-dimensional systems. Tungsten disulfide (WS₂) monolayers exhibit a direct bandgap and strong photoluminescence (PL) in the visible range, opening possibilities for applications. optoelectronic advanced Here we report the realization of twodimensional nanometer size pores in suspended monolayer WS₂ membranes, allowing for electrical and optical response in ionic current measurements. A focused electron beam was used to fabricate nanopores in WS₂ membranes suspended on silicon-based chips and characterized using PL spectroscopy and aberrationcorrected high-resolution scanning transmission electron microscopy (AC-HRSTEM). It was observed that the PL intensity of suspended WS₂ monolayers is ~10-15 times stronger when compared to substrate-supported monolayers, and low transmission dose scanning electron

microscope (STEM) viewing and drilling preserves the PL signal of WS₂ around the pore. We establish that such nanopores allow ionic conductance and DNA translocations. We also demonstrate that under low-power laser illumination in solution, WS₂ nanopores grow slowly in size at an effective rate of ~0.2-0.4 nm/s, thus providing new possibilities for atomicallycontrolled nanopore size using short light pulses.

Figures

Figure 1: (a) WS_2 nanopore device illustrating translocation of DNA through the nanopore under a voltage bias across the membrane. (b) lonic current signal at bias voltage of 400 mV showing DNA translocations as reductions in ionic current. (b-inset) Change in diameter of nanopore due to laser illumination.