Weak localization in wafer-scale graphene

J. M. De Teresa^{1,2}, Inés Serrano-Esparza¹, Soraya Sangiao², A. Ballestar³, L. Serrano-Ramón³, A. García-García^{3,4}, Philippe Godignon⁴, A. Zurutuza⁵, A. Centeno⁵

¹ Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-University of Zaragoza, Zaragoza, Spain

² Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), Departamento de Física de la Materia Condensada, University of Zaragoza, Zaragoza, Spain

³ Graphene Nanotech (GPNT), CEMINEM, Zaragoza, Spain

⁴ Instituto de Microelectrónica de Barcelona, CNM-CSIC, Barcelona, Spain

⁵ Graphenea, San Sebastián, Spain

deteresa@unizar.es

Previous studies have shown evidence of the subtle interplay amongst the elastic (intra-valley and intervalley) and inelastic scattering lengths to determine weak localization (WL) phenomena in graphene [1]. Further investigations of WL can help to understand the scattering mechanisms in the different types of graphene. In the present contribution, we will start bv reviewing the current understanding of WL in graphene and will subsequently proceed to show the experiments performed in our lab to investigate WL phenomena in waferscale graphene. In one set of experiments, metal contacts are first grown and CVDgraphene is later transferred and structured to produce devices such as those shown in Figure 1. In another type of experiments, epitaxial graphene grown on SiC is first structured into Hall-type bars and, subsequently, metal contacts are grown as shown in Figure 2. The magnetotransport results indicate the presence of WL below T~50 K in both types of samples [2]. From the obtained results, the relevant scattering lengths and their temperature

dependence have been determined. The possible origin of the different values of the scattering lengths found for different types of graphene and different experimental situations will be discussed.

References

- E. Mc Cann et al. Phys. Rev. Lett. 97 (2006) 146805, F. V. Tikhonenko et al. Phys. Rev. Lett. 103 (2009) 226801
- [2] I. Serrano-Esparza et al., manuscript in preparation

Figures

Figure 1: SEM imaging of CVD-graphene on top of metal contacts

Figure 2: SEM imaging after lithography to establish metal contacts to epitaxial graphene grown on SiC substrate