Layer Number Controllability of Transition-metal Dichalcogenides and The Establishment of Heterostructures by Using Sulfurization of Thin Transition Metal Films

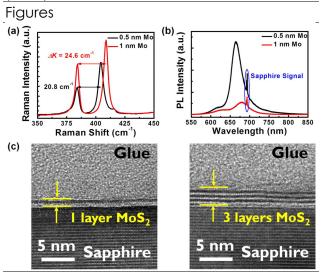
Kuan-Chao Chen^{1,2}

Tung-Wei Chu^{2,3}, Chong-Rong Wu^{1,2}, Si-Chen Lee¹ and Shih-Yen Lin^{1,2,*}

¹Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan ²Research Center for Applied Science, Academia Sinica, Taipei 11529, Taiwan

³Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan

shihyen@gate.sinica.edu.tw


Abstract

In one our previous publications, it has been demonstrated that through the sulfurization of pre-deposited transition metals, different transition metal dichalcogenides (TMDs) and their hetero-structures can be prepared [1]. Large-area and uniform MoS₂ films can also be obtained by using this approach [2]. In this work, through the control of predeposited Mo film thicknesses, we have achieved layer number controllability down to a single-layer MoS₂ by using this growth technique. The Raman spectra of the two samples sulfurized with 0.5 and 1.0 nm Mo are shown in Fig. 1 (a). Two characteristic Raman peaks E¹_{2g} and A_{1g} representing the in-layer and out-of-layer vibration modes of MoS₂ films are observed. The frequency differences Δk of the Raman peak are 20.8 and 24.6 cm⁻¹ for two samples sulfurized with 0.5 and 1.0 nm Mo, respectively, which suggest that less MoS₂ layers are obtained for the sample sulfurized with 0.5 nm Mo. The more intense PL intensity of the sample with 0.5 nm Mo shown in Fig. 1 (b) also confirms this point. The high-resolution transmission electron microscopy (HRTEM) images shown in Fig.1 (c), have revealled that 1- and 3layer MoS₂ are obtained for the two samples, respectively. A sample with sequential 0.5 nm Tungsten (W)/sulfurization/0.5 nm Mo/ sulfurization/ sulfurization 0.5 nm W/ procedures is prepared. Raman The

spectrum and the cross-sectional HRTEM image of the sample shown in Fig. 2 have revealed the establishment of 1-layer WS₂/1layer MoS₂/1-layer WS₂ double heterostructures. Through this growth technique, good layer number controllability down to a single layer of 2D crystals and TMD heterostructures can be achieved. The complexity introduced by the 2D crystal heterostructures in a few atomic layers will bring new device applications to 2D materials.

References

[1] C. R. Wu et al, Nano Lett., 16 (2016) 7093.
[2] K. C. Chen et al, Jpn. J. Appl. Phys., 55 (2016) 090302.

Figure 1: (a) The Raman, (b) the PL spectra and the cross-sectional HRTEM images of the two samples sulfurized with 0.5 and 1.0 nm Mo films.

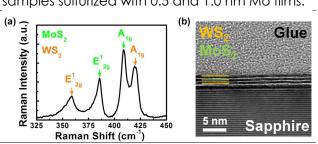


Figure 2: (a) The Raman spectrum and (b) the cross-sectional HRTEM image of the sample with a 1-layer $WS_2/1$ -layer $MOS_2/1$ -layer WS_2 double hetero-structure.