Epitaxially Grown MoS₂/Graphene Hetero-structures for Phototransistor Applications

Hsuan-An Chen^{1, 2},

Wei-Chan Chen^{2, 3}, Hsu Sun^{2, 3}, Shih-Yen Lin^{1, 2, 3,*} ¹Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan. ²Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan

³Institute of Imaging and Biomedical Photonics, College of Photonics, National Chiao-Tung University, Tainan 71150, Taiwan. shihyen@gate.sinica.edu.tw

We have demonstrated large-area and uniform graphene growth directly on sapphire substrate by using CVD. With the graphene/sapphire sample as the new substrate, epitaxially grown MoS₂/graphene hetero-structures can be achieved bv sulfurizing pre-deposited Mo films on the phototransistor substrate for new applications. With mixture gas flow ethane, Ar and H₂, four samples with different growth parameters shown in Fig. 1 (a) are prepared at 1100 °C on sapphire substrates. As shown in the SEM images (Fig. 1 (b)), scattered graphene flakes (Sample A) will gradually form a complete graphene film (sample C) with increasing growth pressures. To avoid the additional carbon clusters, Sample D with a decreasing growth time 90 min is prepared. The lowest D/G peak ratio is also observed for Sample D on the Raman spectra (Fig. 1 (c)). The higher 2D peak intensity to the G peak also suggests that a mono-layer graphene is obtained. The I_D -V_{GS} curve of the araphene transistor fabricated by using the graphene film is shown in Fig. 1 (d). The derived hole mobility 435.9 cm²·v⁻¹·s⁻ of the device is compatible with the araphene films arown on Cu foils. With the direct arowth araphene optimized on substrates, sapphire MoS₂ films are fabricated by sulfurizing pre-deposited Mo films with two different thicknesses on the araphene/sapphire substrate. The Raman peak differences (21.53 and 23.38 cm⁻¹, Fig. 2 (a)) and the cross-sectional HRTEM images (Fig. 2 (b)) show bi-layer and tri-layer MoS₂ are obtained for the two samples [1]. After large-area uniform growth, the and

MoS₂/graphene films (Fig. 2 (C)) are transferred to a 300 nm SiO₂/Si substrate, and fabricated into bottom-gate transistors. With the graphene as the carrier transport path, photo-excited electrons in the MoS₂ absorption layers are attracted by the positive drain voltage and form Dirac point shifts after light irradiation. The Dirac point shifts are 16 V (Fig. 2(d)) for bi-layer and 20 V (Fig. 2 (e)) for tri-layer MoS₂ photodetectors, respectively. The results indicate that with increasing MoS₂ layers, the photocurrent increases.

References

[1] C. R. Wu *et al*, Nano Lett., 16 (2016) 7093. Figures

Figure 2: (a) The Raman spectra, (b) the crosssectional HRTEM images and (c) the pictures of the bi-layer and tri-layer $MoS_2/graphene$ samples. The I_D-V_{GS} curves of the (d) bi-layer and (e) tri-layer $MoS_2/graphene$ phototransistor under dark and light irradiated conditions at V_{DS} = 1V.