Electronic and vibrational properties of V₂C-based MXene: from experiments to first-principles modelling

Aurélie Champagne¹

Lu Shi^{1,2}, Thierry Ouisse², Benoît Hackens¹, Jean-Christophe Charlier¹

1. Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain 1348 Louvain-La-Neuve, Belgium

2. Université Grenoble-Alpes CNRS, LMGP, 38000 Grenoble, France

aurelie.champagne@uclouvain.be

MXenes are new kind of 2D materials produced by selectively etching layers of spelements from their corresponding 3D MAX phase (Fig.1.a). Most MXenes exhibit a unique combination of excellent physical and chemical properties [1] which make them very promising 2D materials for energy devices [2] such as hydrogen storage, Li-ion batteries [3], and electrochemical capacitors [4].

In the present work, the electronic and vibrational properties of pristine bare V₂C (Fig.1.b-c) and terminated V_2CT_2 (T=F,O,OH) (Fig.1.d) 2D layers are investigated based on Density Functional Theory approach. Firstly, the atomic structures of V₂C-based MXene phases are optimized (trigonal P-3m1 space group). Secondly, electronic band structures are computed indicating that V₂C is metallic phase as well as V_2CF_2 , V_2CO_2 , and $V_2C(OH)_2$. Thirdly, phonons, which play a major role in thermal and electronic conductivity of MXenes [5], are computed thanks to Density Functional Perturbation Theory. Both Raman infrared active (E_g, A_{1g}) and (E_{U}, A_{2U}) vibrational modes are predicted ab initio and are found to be in good agreement (maximal deviation 10%) with experimental Raman spectra (Fig.2). However, it is still challenging to exfoliate pure V₂C MXene monosheets from the 3D MAX phase. Indeed, chemically exfoliated **MXenes** usually contain heterogeneous terminal groups [5]. The small discrepancy between experimental and simulated phonon frequencies reported here could be explained by the presence of a mixture of the four types of simulated structures in the exfoliated sample.

References

- [1] M.R. Lukatskaya *et al.*, Nature Communications 7, 1-13 (2016).
- [2] F. Shahzad *et al.*, Materials Science 353, 1137-1140 (2016).
- [3] M. Ghidiu *et al.*, Nature 516, 78-81 (2014).
- [4] K.J. Harris *et al.*, The Journal of Physical Chemistry C 119, 13713-13720 (2015).
- [5] X. Xiao *et al.*, Nature Communications 7, 1-8 (2016).

Figures

Figure 1: SEM images of (a) MAX V₂AIC, (b) MXene V₂C, and *ab initio* atomic structures of (c) V₂C and (d) terminated V₂CT₂ (T=F,O,OH).

Figure 2: Experimental Raman spectra of the MAX V_2AIC (blue) and the corresponding exfoliated MXene V_2C (red) phase. Ab initio Raman frequencies of pure V_2C (green) are also included for comparison.