Uniform Atomic Layer Deposition of Al₂O₃ on Graphene by Reversible Hydrogen Plasma Functionalization

A. A. Bol

R. H. J. Vervuurt, B. Karasulu, M.A. Verheijen, W. M. M. Kessels

Eindhoven University of Technology, Den Dolech 2, Eindhoven, the Netherlands

a.a.bol@tue.nl

A novel method to form ultrathin, uniform Al₂O₃ layers on graphene using reversible hydrogen plasma functionalization followed by atomic layer deposition (ALD) is presented. ALD on pristine graphene is known to be a challenge due to the absence of dangling bonds, leading to nonuniform film coverage. We show that hydrogen plasma functionalization of graphene leads to uniform ALD of closed Al₂O₃ films down to 8-nm in thickness. Hall measurements (figure 1) and Raman spectroscopy reveal that the hydrogen plasma functionalization is reversible upon Al₂O₃ ALD and subsequent annealing at 400 °C, and in this way does not deteriorate the graphene's charge carrier mobility. This is in contrast with oxygen plasma functionalization, which can lead to a uniform 5-nm thick closed film, but which is not reversible and leads to a reduction of the charge carrier mobility. Density functional theory (DFT) calculations attribute the uniform growth on both H₂ and O₂ plasma functionalized graphene to the enhanced adsorption of Trimethylaluminum (TMA) on these surfaces. A DFT analysis of the possible reaction pathways for TMA precursor adsorption on hydroaenated graphene predicts a binding mechanism that cleans off the hydrogen functionalities from the surface, which explains the observed reversibility of the hydrogen plasma functionalization upon Al₂O₃ ALD.

Figure 1: Charge carrier mobility of pristine graphene, H₂ plasma treated graphene, H₂ plasma treated graphene with 8 nm ALD AL₂O₃ on top, and after 400°C anneal.

Figure 2: Raman spectrum of pristine graphene, H₂ plasma treated graphene, H₂ plasma treatedgraphene with 8 nm ALD AL₂O₃ on top, and after 400°C anneal.