Photonics of two-dimensional materials: graphene and beyond

Qiaoliang Bao1,*

Presenting Author
Co-Authors: Shaojuan Li, Yupeng Zhang
1 Department of Materials Engineering, Monash University, Clayton, Victoria 3800, Australia
2 FUNSOM, Soochow University, Suzhou 215123, P. R. China
Contact@E-mail: qiaoliang.bao@monash.edu

Here we would like to review our recent progresses on the photonic applications of graphene and other two-dimensional (2D) layered materials.[1,2]

Firstly, we report the development of new saturable absorbers based on graphene heterostructures and other 2D materials, including graphene/Bi2Te3[3], black phosphorus[4] and self-doped plasmonic 2D Cu3-xP nanosheets[5]. Depending on their nonlinear optical properties, both high energy Q-switched laser and ultrafast mode-locked pulse generation were demonstrated.

Secondly, we fabricated a highly efficient hybrid photodetector that consists of graphene covered with dispersive organolead halide perovskite (CH3NH3PbBr3) islands.[6] We also demonstrated a broadband photodetector based on graphene-Bi2Te3 heterostructure.[7] Furthermore, we developed new methods to grow and transfer large area single crystal WS2 [8], large area MoS2/WS2 heterojunction [9], and monolayer-bilayer WS2 heterojunction [10], and demonstrated their applications for photodetectors.

Thirdly, we investigated plasmonic excitation and THz modulation in graphene/Bi2Te3[11], graphene nanoribbon [12] and 3D graphene [13] using either spectroscopic or real space imaging techniques. The important discoveries include the plasmonic coupling of two Dirac materials [11], excitation of high-order mode [13] and edge chirality-related plasmonic broadening [12].

Last, we report our recent progress on the synthesis of 2D organic-inorganic hybrid perovskite nanosheets as well as their optoelectronic applications.[14-17]

In summary, the advances of photonics of 2D materials may pave the way for the integration of next generation hybrid silicon photonic circuit.

References

[17] Yupeng Zhang, and Qiaoliang Bao*, et al., Chemical Communications, 2016, DOI: 10.1039/C6CC06425F.