Precision ion sensitive transistors enabled by wafer scale graphene

Thomas Szkopek

McGill University, 3480 University Street, Montreal, Canada thomas.szkopek@mcgill.ca

Abstract

Accurate, real-time measurement of ion concentration is of broad importance to the management of fresh water resources, effective waste water treatment, and industrial process control. I will present recent work on large-area graphene based ion sensitive field effect transistors (ISFETs), employing metal oxide layers or ionophore based membranes and wafer scale graphene processing methods [1-4]. Large-area graphene ISFETs benefit from the combination of high mobility charge transport ($\mu = 5000 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$), reduced low-frequency noise with increasing transistor channel area ($K = f < \Delta v^2 > /v_0^2 = 5 \times 10^{-13}$ for a 5 mm x 5 mm device), and facile integration with ion sensitive layers (for example, sensitive to H⁺, K⁺, Na⁺, NH₄⁺, Cl⁻, NO₃⁻, HPO₄²⁻ and SO₄²⁻). The combination of Nernstian limited sensitivity with low 1/*f* noise enables concentration resolution of *r* ~ 0.003 log M. The stability and resolution of graphene ISEFTs allows simultaneous, real-time measurement of multiple analytes through the application of Nikolskii-Eisenmann analysis to an array of graphene ISFETs, improving selectivity over that achievable with a single ISFET. I will conclude with a discussion of challenges and prospects for future development of graphene ISFETs for water quality monitoring applications.

REFERENCES

- [1] Tran et al., Nanotechnology, in press (2020).
- [2] Fakih et al., Nature Communications 11, 3226, (2020).
- [3] Fakih et al., Sensors and Actuators B 291 89 (2019).
- [4] Fakih et al., Physical Review Applied 8, 044022 (2017).

Fig. 1. (a) Schematic of a graphene ISFET encapsulated with parylene and a sensing layer on a SiO₂/Si substrate. (b) Electrical schematic for measuring the current through the graphene channel I_{ds} for different electrolytic solutions, with bias V_{ds} , and reference electrode V_{ref} (c) The measured channel current, I_{ds} , versus V_{ref} , for a representative K⁺-sensitive graphene ISFET. (d) Continuous real-time measurement of I_{ds} of a K⁺-sensitive graphene ISFET while increasing K⁺ molar concentration in decade steps.