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Highly anisotropic crystals have recently attracted considerable attention because of their ability to 
support polaritons with a variety of unique properties, such as hyperbolic dispersion, negative phase 
velocity, or extreme confinement. Particularly, the biaxial van der Waals semiconductor α-phase 
molybdenum trioxide (α-MoO3) has recently received substantial attention due to its ability to support 
in-plane hyperbolic phonon polaritons (PhPs) —infrared (IR) light coupled to lattice vibrations in polar 
materials—, offering an unprecedented platform for controlling the flow of energy at the nanoscale 
[1,2]. Yet, to accurately predict the IR response of α-MoO3 and thus to enable predictive capabilities 
for the extraordinary optical response of this material, it is imperative to develop both an accurate IR 
dielectric function model for α-MoO3 and a theoretical study on electromagnetic modes in biaxial 
crystal slabs. 
 
Here [3], we derive the dispersion relation of electromagnetic modes in biaxial slabs surrounded by 
semi-infinite isotropic dielectric half-spaces with arbitrary dielectric permittivities. Apart from a general 
dispersion relation, we provide very simple analytical expressions in typical experiments in nano-
optics: the limits of short polaritonic wavelength and/or very thin slabs, allowing for an in-depth 
analysis of anisotropic polaritons in novel biaxial van der Waals materials. 
 
Moreover, we report the accurate IR dielectric function of α-MoO3 [4] by modelling polarized IR 
reflectance spectra acquired on a single thick flake of this material. Unique to our work, the far-field 
model is refined by contrasting the experimental dispersion and damping of PhPs extracted by near-
field polariton interferometry using scattering-type scanning nearfield optical microscopy (s-SNOM) on 
thin flakes of α-MoO3, with analytical [3] and transfer-matrix calculations, as well as full-wave 
simulations (Fig. 1). Through these correlative efforts, exceptional quantitative agreement is attained 
to both far- and near-field properties for multiple flakes, thus providing strong verification of the 
accuracy of our model, while offering a novel approach to extracting dielectric functions of 
nanomaterials, usually too small or inhomogeneous for establishing accurate models only from 
standard far-field methods. In addition, by employing density functional theory (DFT), we provide 
insights into the various vibrational states dictating our dielectric function model and the intriguing 
optical properties of α-MoO3. 
 
Our findings will enable the interpretation of experimental far- and near-field data, as well as an 
efficient design of nanostructures supporting such highly anisotropic polaritons supported by α-MoO3. 
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