CHEM2DMAC

Arginine-modified graphene oxide for Carbon dioxide fixation

A. Pintus^[a-b], S. Mantovani^[a], A. Kovtun^[a], G. Bertuzzi^[c], M. Bandini^[c], M. Melucci^[a]. ^[a]Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy.

^[b]Department of Physics, Informatics and Mathematics, Università degli Studi di Modena e Reggio Emilia, via Giuseppe Campi, 213/a 41125 Modena, Italy.

^[c]Dipartimento di Chimica, "Giacomo Ciamician" Alma Mater Studiorum – Università di Bologna, via Selmi 2, 40126 Bologna, Italy.

angela.pintus@isof.cnr.it

The catalytic transformation of CO₂ into value-added organic compounds is matter of growing interest in organic chemistry.[1] A variety of catalytic systems have been explored, but the development of an environmentally benign, heterogeneous catalyst that is highly active at mild conditions remains challenging.[2] Due to its large surface area and chemical versatility,[3] Graphene oxide (GO), has received extensive attention as nanostructured carbon-based catalyst.[4]

In this work, we report on the synthesis and characterization of covalently modified GO with L-Arginine (GO-Arg) and on its use as CO₂ fixation substrate and carbocatayst.[5] GO-Arg was synthesized by epoxide ring opening reaction, purified by microfiltration and characterized by X-ray photoelectron spectroscopy and elemental analysis to measure the amino acid loading. GO-Arg nanosheets were then exploited as catalyst for chemo selective ring-opening of epoxides and conversion to cyclic carbonates under mild operating conditions on several different substrates (up to 15). High yields (up to 85 %), regeneration and reuse up to 5 cycles have been achieved and will be here reported.

References

- [1] M Aresta et al., Dalton Trans. (2007), 2975-2992.
- [2] X. Zhang et al., Front. Energ. Res. (2021), 8, 621119.
- [3] S. Khaliha et al., Environ. Sci.: Water Res. Technol. (2023).
- [4] L. Lombardi et al., Chem. Eur. J. (2022), e20220033
- [5] A. Pintus et al., Chem. Eur. J. (2023), 29, e202202440.

Figures

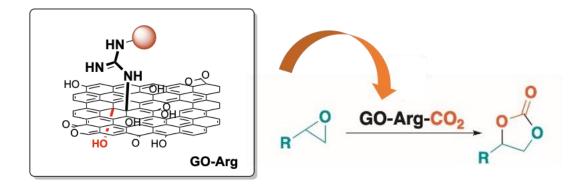


Figure 1: Nucleophilic activation of carbon dioxide by the guanidine group of GO-Arg.