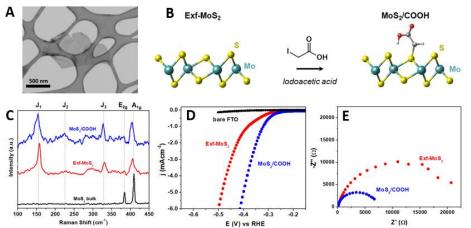
CHEM2DMAC

Boosting the Electrocatalytic Activity of Chemically Exfoliated MoS₂ by Surface Functionalization

Camila Marchetti Maroneze¹, Leandro Hostert¹, Caroline B. de Aquino¹, Valéria S. Marangoni², Matheus S. Dias¹, Cecília C. C. Silva¹, Leandro Seixas¹ ¹Mackenzie Presbyterian University - MackGraphe Institute, São Paulo-SP, 01302-907, Rua da Consolação 896, Brazil ²Ilum School of Science, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas-SP, 13087-548, Brazil


camila.maroneze@mackenzie.br

The vibrant research area on ultrathin two-dimensional (2D) layered materials has continually shown that the unique and superlative properties firstly observed for graphene find a significant equivalence in other 2D materials as the transition metal dichalcogenides (TMDs). The MoS₂ is an important example which has triggered broad and intense investigations. The 2H-to-1T phase conversion is a semiconductor-to-(semi)metal transition with huge impact on its applications, mainly for electrochemical technologies. The surface functionalization of MoS₂ with a wide variety of species such as metal atoms, organic molecules, metallic nanoparticles, and polymers has been explored as an efficient strategy to modify its intrinsic properties [1,2], for multiple purposes and applications, including phase engineering. In this study, by an experimental-theoretical approach, we show how the chemical functionalization of 1T'-MoS2 with iodoacetic acid molecules improves both the structural stability and the electrocatalytic properties of the metallic nanosheets for the hydrogen evolution reaction (HER) (Figure 1). The presence of -CH₂COOH groups on the MoS₂ surface boosts the electrocatalytic effects for the hydrogen evolution reaction, reducing the charge transfer resistance of the interface and preventing the oxidation and deactivation of the active sites.

References

- [1] C. Wang, R. Furlan de Oliveira, K. Jiang, Y. Zhao, N. Turetta, C. Ma, B. Han, H. Zhang, D. Tranca, X. Zhuang, L. Chi, A. Ciesielski and P. Samorì, Nature Communications, 2022, 13, 1–10.
- [2] H. Liu, D. Grasseschi, A. Dodda, K. Fujisawa, D. Olson, E. Kahn, F. Zhang, T. Zhang, Y. Lei, R. B. Nogueira Branco, A. L. Elías, R. C. Silva, Y. T. Yeh, C. M. Maroneze, L. Seixas, P. Hopkins, S. Das, C. J. S. de Matos and M. Terrones, Science Advances, 2020, 6 (49).

Figures

Figure 1: (A) STEM image of chemically exfoliated MoS_2 ; (B) schematic illustration of the functionalization of MoS_2 nanosheets; (C) Raman spectra of pristine and functionalized MoS_2 and (D-E) electrochemical HER studies of MoS_2 and $MoS_2/COOH$ samples.

Acknowledgments: MackPesquisa