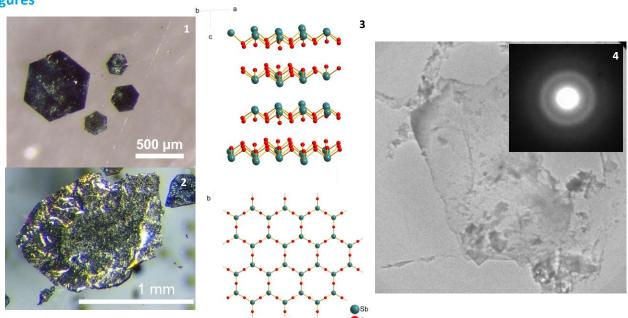
CHEM2DMAC

2D Antimony Oxide by Deintercalation of K₂(Sb₂O₃)₂Te

Oliver Dreimann, Huanyu He, Michael Rüsing, Daniel Wolf and Michael Ruck


Technische Universität Dresden, Bergstraße 66, Dresden, Germany Oliver.Dreimann@tu-dresden.de

Perspectives and research on free-standing 2D materials, especially functional materials, promises new chemical and physical properties but also comes with challenges regarding the control of dimensions, minimization of defects, handling, mechanical and chemical damage prevention and many more factors. Utilizing hydroflux synthesizes [1-2] in an equimolar mixture of KOH and water in an autoclave, shiny green platelet crystals of the layered material K₂(Sb₂O₃)₂Te were synthesized. Similar to Sb₂O₃, but unlike K₂Te, the compound is insensitive to air and water. By using ion extraction techniques in presence of crown-ethers under mild conditions, both potassium and tellurium ions can be deintercalated. The crystal morphology does not change significantly, but the platelets are now silvery and mica-like. The composition is Sb₂O₃, but the 3D crystallinity has been lost. We assume that the ferroelectric Sb₂O₃ layers of the initial compound have been preserved and form a metastable polymorph. Since the dipoles of adjacent layers are opposite, it is a repulsive vander-Waals stack that is prone to delamination.

References

[1] W. M. Chance, D. E. Bugaris, A. S. Sefat, H.-C. zur Loye, Inorg. Chem. **2013**, 52, 11723–11733.

[2] R. Albrecht, M. Ruck, Angew. Chem. Int. Ed. **2021**, 60, 22570–22577

Figure 1: Cystals of $K_2(Sb_2O_3)_2Te$ (1) and layered Sb_2O_3 (2). Sb_2O_3 partial structure in $K_2(Sb_2O_3)_2Te$ (3) and TEM image of exfoliated flakes of metastable Sb_2O_3 (4).

Figures