CHEM2DMAC

Preparation of graphene-based all-carbon hybrids based on fluorographene chemistry

Demetrios D. Chronopoulos, Michal Otyepka

Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czechia dimitrios.chronopoulos@upol.cz

Fluorographene (FG) is a stoichiometric (C_1F_1) and well-defined graphene derivative, [1] which has been employed as an alternative precursor for the preparation of covalently modified graphene derivatives.[2] The reaction mechanism stems from FG electrophilicity and can be simplified as a nucleophilic substitution (S_N) mechanism initiated by radical point defects.[3] Owing to their bonding with the highly electronegative fluorine atoms, carbons of FG behave as electrophiles and hence, are susceptible to attack by nucleophiles.[4] Simultaneously with their substitution, nucleophiles cause reductive defluorination through promoting the heretolytic cleavage of the C-F bonds, which results in the formation of the extended π -network of graphene. Thus, practically fluorine-free graphene derivatives are prepared.[2] In this frame, a fullerene derivative bearing a primary amine unit as nucleophile reacted with the electrophilic FG, resulting in the synthesis of the first all-carbon hybrid based on the chemistry of FG.[5] Recently, going one step further and taking into account that F atoms of FG have been replaced by two different functionalities through tuning the equivalents of reagents,[6] first the covalent linking of FG with a carbon allotrope was performed and next, the remaining F atoms were employed for the grafting of another nucleophile, thus providing a selective - in respect with the other carbon allotrope - post modification. Project Nano4Future is gratefully acknowledged.

References

- [1] X. Chen, et al. Adv. Mater., 34 (2022) 2101665
- [2] D. D. Chronopoulos, et al. Appl. Mater. Today, 9 (2017) 60
- [3] M. Medved', et al., Nanoscale, 10 (2018) 4696
- [4] K. E. Whitener, et al., J. Phys. Chem. C, 119 (2015) 10507
- [5] D. D. Chronopoulos, et al. Chem. Commun., 58 (2022) 8396
- [6] D. D. Chronopoulos, et al. Chem. Commun., 56 (2020) 1936

Figures

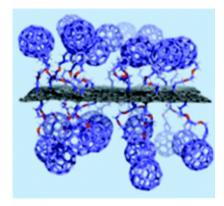


Figure 1: Covalently linked fullerene moieties onto graphene lattice via the chemistry of FG.