

Yingying Zhang, Miroslav Položij, Thomas Heine

Chair of Theoretical Chemistry, TU Dresden

The influence of stacking on properties of layered COFs

Dresden, Wednesday, 01. Sep. 2021

Introduction - LCOFs

- Layered Covalent Organic Frameworks (LCOFs)
 - Build from organic linkers and centers
 - Many available topologies
 - Variable and tunable structures
- Properties of LCOFs depend on their stacking

Lohse, Maria S., and Thomas Bein. *Adv. Funct. Mater.* **2018**, *28*, 1705553 X. Ding, D. Jiang, et al., Angew. Chem., Int. Ed. 2011, 50, 1289 P. Côté, O. M. Yaghi, et al., J. Am. Chem. Soc. 2007, 129, 12914.

Introduction – PXRD discrepancy

• A systematic discrepancy between predicted theoretical and experimental structures of LCOFs.

Introduction – disorder along c direction

 $AA = AA_s$

Real structure

Introduction – PXRD discrepancy

• A systematic discrepancy between predicted theoretical and experimental structures of LCOFs.

Statistical model

- How the statistical model build:
 - Statistical based on energy

Boltzmann :
$$p = \frac{e^{-\frac{E_i}{kT}}}{\sum e^{-\frac{E_i}{kT}}}$$

- Which structure we studied:
 - COF-1, COF-5, ZnPc-pz COF

Introduction – stacking modes in hcb lattice

concer

Pütz A. M., Terban M. W., Bette S., et al., Chem. Sci., 2020, 11(47): 12647-12654.

RESDEN

COF stacking modes

	Honey-	E _{rel} : kJ/mol/BB		Square	E _{rel} : kJ/mol/BB
	COND	COF-1	COF-5		ZnPc-pz COF
	AA _{ecl}	35.5	49.1	AA_{slip}	72.4
	Aa _{slip}	5.9	0.1	AB_{diag}	440.2
	Ab_{slip}	16.4	98.6	ABC _{linear}	0.0
	ABC _{slip}	0.0	0.0	ABC _{zigzag}	36.9
	AA		AB	1	ABC
		= _			\mathbf{X}
		6-67 0-30-40	X		
xan Xean		40-01 2-03-0 G=02 2-030=0			

- ABC can be more stable than AA
 - Even in materials as COF-1
- Periodic corrugation in ABC stabilizes the structure

8

concep

Realistic structure of layered materials Long range disorder

- COF-1 has totally different stacking behavior before and after guest removal.
- The statistical model improves the PXRD pattern a lot.

Solvent molecules in ABC

• Mesitylene in COF-1.

10

DRESDE

concep

Varying probabilities of AA/AB(C)

During solvent evacuation, structure shifts from ABC to AA in COF-1.
They can mix!

concep

Realistic structure of layered materials Long range disorder

ECHNISCHE

NIVERSITÄT

DRESDEN

DRESDEN

concept

Summary

COFs are disordered in c direction

Theoretical structures do **not** have disorder -> Wrong!

Statistical model corrects it.

 We only need standard (bulk) structures and their energies. Then we just stack the layers according to statistics.

Cheap and simple!

- COF structures can be **combinations of more stacking modes**
 - AA+ABC in COF-1.
- The method can be extended to any COFs and MOFs
 - Different characterization PXRD, TEM, electronics...
 - Can model other types of defects.

co-o3- <mark>co-o3- co-o3- c</mark> co-oo- c oo-oo o -co-oo - c oo-oo o -co-oo - c oo-oo o -co-oo o co os e oo os os e oo os e oo os 0 - co- 03 - co - 03 - 0 s - co-os - o c co oo - co oo oo 0 -00-03 - 0 -00-03 - 0 -00-03 - 0 -00-03 - 0 -00-03 - 0 • co os • o os • co os • co os • o os • co os • o os • o 00-02 0 -00 03 0 -00 02 0 -00 02 0 -00 02 0 -00 03 0 -co-oo-<mark>o oo-oo-oo-</mark>co-oo-<u>o oo-oo-oo-oo-oo-</u>co-oo-0 CO 00 0 0 0-co-oo- 0 -co-oo- 0 -co-oo- 0 -co-oo- 0 -co-oo- 0 -co-oo- 0 -co-oc o -co-os - co-oc o -co-os -co-oc o -co-os -co-os -co-os a co-o -o -co-o - o -co-o -o -co-o -o

co o, o, co o, o co o, o, co o, o co o, o co o, o, co o, o

Acknowledgements

Prof. Dr. Thomas Heine Dr. Miroslav Položij

