

Scalable high-mobility graphene/hBN heterostructure

Leonardo Martini¹, Vaidotas Miseikis^{1,2}, Paolo Paletti^{1,2}, David Esteban³, Jon Azepelitia³, Simona Pace^{1,2}, Domenica Convertino^{1,2}, Sergio Pezzini^{1,2,4}, Mar Garcia Hernandez³, Igniacio Jimenez³, Camilla Coletti^{1,2}

1) Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127, Pisa, Italy

- **2)** Graphene Labs, Istituto italiano di tecnologia, Via Morego 30, I-16163 Genova, Italy
- **3)** Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, E-28049 Madrid, Spain
- 4) NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, Pisa 56127, Italy

02/09/2021

CHEM2DMAC : AUGUSC 31 - SEPTEMBER 03, 2021 • BOLOGNA, ICALY EUROPEAN CONFERENCE ON CHEMISCRY OF TWO-DIMENSIONAL MACERIALS

Graphene encapsulation

LETTERS PUBLISHED ONLINE: 22 AUGUST 2010 | DOI: 10.1038/NNANO.2010.172

nature nanotechnology RAPHEN

ISTITUTO ITALIANO DI TECNOLOGIA

pubs.acs.org/NanoLett

Boron nitride substrates for high-quality graphene electronics

C. R. Dean^{1,2*}, A. F. Young³, I. Meric¹, C. Lee^{4,5}, L. Wang², S. Sorgenfrei¹, K. Watanabe⁶, T. Taniguchi⁶, P. Kim³, K. L. Shepard¹ and J. Hone^{2*}

NANO LETTERS

Electronic Properties of Graphene Encapsulated with Different Two-Dimensional Atomic Crystals

A. V. Kretinin,**[†] Y. Cao,[†] J. S. Tu,[†] G. L. Yu,[‡] R. Jalil,[†] K. S. Novoselov,[‡] S. J. Haigh,[§] A. Gholinia,[§] A. Mishchenko,[§] M. Lozada,[‡] T. Georgiou,[‡] C. R. Woods,[‡] F. Withers,[†] P. Blake,[†] G. Eda,^{||} A. Wirsig,[⊥] C. Hucho,[⊥] K. Watanabe,[#] T. Taniguchi,[#] A. K. Geim,^{†,‡} and R. V. Gorbachev[†]

REPORT

One-Dimensional Electrical Contact to a Two-Dimensional Material

L. Wang^{1,2,*}, I. Meric^{1,*}, P. Y. Huang³, Q. Gao⁴, Y. Gao², H. Tran⁵, T. Taniguchi⁶, K. Watanabe⁶, L. M. Campos⁵, D. A. Muller... + See all authors and affiliations

Science 01 Nov 2013: Vol. 342, Issue 6158, pp. 614-617 DOI: 10.1126/science.1244358

CVD-graphene

V. Miseikis et al., 2D Mater. 2 (2015) 014006

V. Miseikis et al., 2D Mater. 4 (2017) 021004

High quality CVD-graphene

2D Materials

High-quality electrical transport using scalable CVD graphene

Sergio Pezzini^{1,2,6} (D), Vaidotas Mišeikis^{1,2} (D), Simona Pace^{1,2} (D), Francesco Rossella³ (D), Kenji Watanabe⁴ (D), Takashi Taniguchi⁵ and Camilla Coletti^{1,2} (D) Published 17 August 2020 • © 2020 The Author(s). Published by IOP Publishing Ltd <u>2D Materials, Volume 7, Number 4</u>

2D Materials

LETTER • OPEN ACCESS

Fractional quantum Hall effect in CVD-grown graphene

M Schmitz^{1,2} (D), T Ouaj^{1,2}, Z Winter^{1,2}, K Rubi³ (D), K Watanabe⁴ (D), T Taniguchi⁵, U Zeitler³, B Beschoten¹ (D) and C Stampfer^{1,2} (D)

Published 10 September 2020 ${\scriptstyle \bullet \ } \odot$ 2020 The Author(s). Published by IOP Publishing Ltd

2D Materials, Volume 7, Number 4

COMMUNICATIONS

Scalable hBN sources

pubs.acs.org/NanoLett

ARTICLE

Received 10 Jun 2015 | Accepted 17 Sep 2015 | Published 28 Oct 2015

comms9662 OPEN

Synthesis of large-area multilayer hexagonal boron nitride for high material performance

Soo Min Kim^{1,2}, Allen Hsu², Min Ho Park³, Sang Hoon Chae^{4,5}, Seok Joon Yun^{4,5}, Joo Song Lee¹, Dae-Hyun Cho⁶, Wenjing Fang², Changgu Lee^{7,8}, Tomás Palacios², Mildred Dresselhaus^{2,9}, Ki Kang Kim¹⁰, Young Hee Lee^{4,5} & Jing Kong²

Wafer-Scale and Wrinkle-Free Epitaxial Growth of Single-Orientated Multilayer Hexagonal Boron Nitride on Sapphire

A-Rang Jang,^{†,‡,§} Seokmo Hong,[†] Chohee Hyun,[‡] Seong In Yoon,[‡] Gwangwoo Kim,[‡] Hu Young Jeong,[⊥] Tae Joo Shin,[⊥] Sung O. Park,[∨] Kester Wong,[∨] Sang Kyu Kwak,^{||,∨} Noejung Park,^{||,#} Kwangnam Yu,^O Eunjip Choi,^O Artem Mishchenko, Freddie Withers, Kostya S. Novoselov, Hyunseob Lim,^{*,†,§,||} and Hyeon Suk Shin^{*,†,‡,§,||}

Synthesis and Characterization of Hexagonal Boron Nitride Film as a Dielectric Layer for Graphene Devices

Ki Kang Kim,^{†,‡} Allen Hsu,[†] Xiaoting Jia,[§] Soo Min Kim,[†] Yumeng Shi,[†] Mildred Dresselhaus,^{†,⊥} Tomas Palacios,[†] and Jing Kong^{†,*}

It is possible to improve the graphene electrical characteristics, using scalable hBN, but we are still not in pair with exfoliated hBN

PVD - IBAD hBN growth

- hBN thickness between 10 and 20 nm
- Either hBN with basal plane • orientation perpendicular and parallel to the substrate have been studied
- Sample growth with Boron and B₄C as solid precursor has been tested
- Graphene has been successfully transferred on hBN growth from Boron and B_4C precursors, and planar orientation either parallel and orthogonal to the substrate

Claudia Backes et al 2020 2D Mater. 7 022001 R. To – IBAD growth of hBN rres et al, Carbon 74 (2014) 374 I. Caretti and I. Jimenez, J. Appl. Phys. 110, 023511 (2011) - 378

I. Jimenez et al, . Mater. Res., Vol. 27, No. 5, Mar 14, 2012

hBN roughness - AFM

Parallel

SiO₂(300nm)/Si

 $B_4C(vap) + N_2^+$

10

JA-BCN-010

Graphene transfer on hBN: device fabrication

Exfoliated hBN as dielectric for g-FET

Exfoliated hBN as dielectric for g-FET

28

Exfoliated hBN as dielectric for g-FET

Conclusion and further perspective

- IBAD grown hBN presents roughness in pair with the growth substrate
- High quality scalable single crystal graphene has been successfully transferred on scalable hBN
- The scalable graphene/hBN stack has been characterized via AFM, Raman spectroscopy and electrically
- Doping of graphene on hBN is comparable with that measured on SiO₂/Si substrates
- Raman indicate strain reduction for graphene on hBN
- RT mobility of grapheme/hBN is ~10 000 cm²/Vs, a factor 1.5 higher than those measured on SiO₂/Si substrate
- RT mobility of 15 000 cm²/Vs has been measured implementing an exfoliated hBN top gate.
- Further reduction of the roughness could be achieved with a transfer of the hBN film on a pristine substrate
- Characterization of the hBN as dielectric is still under development
- Full-scalable graphene encapsulation, with IBAD-grown hBN

ISTITUTO ITALIANO

DITECNOLOGIA

GRAPHENE FLAGSHIP

leonardo.martini@iit.it