

Parallel Workshop 1 1st September 2021

Charge transport mechanisms in GRM thin films: interplay between different length scales

Alex Boschi

alex.boschi@isof.cnr.it

Istituto per la Sintesi Organica e la Fotoreattività (ISOF) CNR – Bologna, Italy

Purpose of the work

Given Structural characterization of GRM samples

Charge transport in GRM thin films

2-Dimensional materials printed electronic devices

Charge transport in single sheet devices

Joung et al., Phys. Rev. B 86, 235423 (2012)

Kelly et al., Science 356, 6333 (2017)

Charge transport in bulk systems

Ye et al., Science 338, 1193 (2012)

GRMs as test model to study multiscale systems

Two different GRM nanosheets

AFM

Reduced Graphene Oxide (**RGO**)

- ✓ purely 2D material
- ✓ negligeable oxygen contenent

z-range: 2.5 nm

Electrochemical Exfoliated GO (EGO)

- ✓ multilayer nanosheets
- ✓ oxygen functionalities

z-range: 11 nm

XPS

representative Raman spectra

Macroscopic GRM thin films

photograph of a film

AFM image

Film network structure: RGO vs. EGO

XRD measurements on GRM films

Film network structure: RGO vs. EGO

XRD measurements on GRM films

few stacked single sheets

a partially oxidised single flake

room temperature

Charge transport in a nutshell

Transport models in disordered semiconductors

 \checkmark critital regime Power law (PL) Variable Range Hopping (VRH) ✓ nuclear tunnelling ✓ etc E E E_c E_c r $\rho(T) \sim T^{-m}$

 ξ : localisation length

r

p depends on Density of States $g(\mu_F)$ shape

p	
1/2	1D system, $g(\mu_F) \neq 0$
1/3	2D system, $g(\mu_F) \neq 0$
1/4	$3D \text{ system, } g(\mu_F) \neq 0$
1/2	$g(\mu_F) = 0$

$\rho(T)$ for GRM films

normalised resistivity

Charge transport analysis for GRM films

12

activation energy

W = $\partial \ln T$

Magnetoresistance as a tool for understanding charge transport mechanisms

Electrical noise measurements

Acknowledgement

Take home messages

graphene-related materials (GRM) to study electrical properties of networks

similar macroscopic electrical resistivities, different charge transport behavior depending on network nano- and micro- scale structure Let's discuss...

ALEX BOSCHI

alex.boschi@isof.cnr.it

CNR – ISOF @ Bologna (IT)

