Tuning the electrode work function by the deposition of chemically functionalized MXenes-an SPM study

<u>Vasiliki Benekou</u>¹, Jinhua Sun², Andrea Candini¹, and Vincenzo Palermo^{1, *}

¹ Institute of Organic Synthesis and Photoreactivity, National Research Council of Italy, 40129, Bologna, Italy

² Department of Industrial and Materials Science, Chalmers University of Technology, 41296 Göteborg, Sweden

Vasiliki Benekou vasiliki.benekou@isof.cnr.it ISOF-CNR 01/09/2021

AUGUSC 31 - SEPCEMBER 03, 2021 • BOLOGNA, ICALY EUROPEAN CONFERENCE ON CHEMISCRY OF TWO-DIMENSIONAL MACERIALS

MXenes – Overview

M_{n+1}X_nT_x

M: Early transition metal (Ti, Sc, Zr, etc.)

X: Carbon and/or Nitrogen

 T_x : Surface terminations (OH, O, CI, and/or F)

n: 1, 2, or 3

"Green Mxenes turtle" by Babak Anasori et. al, Department of Materials Science and Engineering, and A.J. Drexel Nanotechnology Institute, Drexel University, Philadelphia, PA 19104, USA

Ti₃C₂T_x

Yury Gogotsi and Babak Anasori, The Rise of MXenes, ACS Nano **2019** 13 (8), 8491-8494

$Ti_3C_2T_x$ MXenes – Tuning of the materials properties

Surface chemistry of MXenes

ARTICLES

mature

Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells

A. Agresti^{1,2,7}, A. Pazniak^{3,7}, S. Pescetelli^{1,7}, A. Di Vito¹, D. Rossi¹, A. Pecchia⁴, M. Auf der Maur¹, A. Liedl⁵, R. Larciprete^{5,6}, Denis V. Kuznetsov³, D. Saranin¹² and A. Di Carlo^{1,2*}

various termination groups (Tx) to tune the work function (WF)

Surface functional groups or/and functionalization →big influence on the work function

Ti₃C₂T_x MXenes – Synthesis and processing

• **Ti₃C₂T_x MXenes** – Preparation

Babak Anasori, Maria L. Lukatskaya and Yury Gogotsi, 2D metal carbides and nitrides (Mxenes) for energy storage, *Nature Reviews*, **2017** (2), 16098

• Ti₃C₂T_x MXenes – Covalent and Non-covalent functionalization of MXenes

Pure MXenes (Ti₃C₂Tx) and different types of **functionalization**

I. Pure MXenes ($Ti_3C_2T_x$)

2. MXenes (Ti₃C₂) functionalized with Sodium 2-mercaptoethanesulfonate (MPS)

Expected interaction: Noncovalent functionalization → MXenes negatively charged

3. MXenes (Ti₃C₂) functionalized with
((vinylbenzyl)trimethylammonium chloride)
(VTA)

Pure MXenes – AFM Imaging and Analysis

Figure 1. AFM image of Pure MXenes on Si substrate.

Diagram 1. Corresponding histogram of the flakes shown on the left AFM image.

Pure MXenes – AFM Imaging and Analysis

Diagram 2. Pure MXenes thickness/number of layers dependence diagram.

Ti₃C₂T₄ MXenes – AFM Imaging and Analysis

FMXenes (MPS)

FMXenes (VTA)

Materials	Interlayer distance(nm)	Absorbed molecules "sublayer"
Pure MXenes	1.6±0.1	0.4±0.2
FMxenes (MPS)	1.6±0.1	0.4±0.1
FMxenes (VTA)	I.5±0.1	0.4±0.1

Table 1. Summary table of different MXenes values of interlayer distance and steps from one layer to the other.

a. Hongyue ling et. al, Modulation of the Electronic Properties of MXene (Ti3C2Tx) via Surface-Covalent Functionalization with Diazonium, ACS Nano 2021 15 (1), 1388-1396 b. Two-Dimensional MXene with Controlled Interlayer Spacing for Electrochemical Energy Storage, P. Simon, ACS Nano 2017 11 (3), 2393-2396

I.5nm

44.2

45.8 X Range: 3.14 µm

Kelvin Probe Technique - Overview

Work function = energy needed to remove an elctron from a material

Kelvin Probe Force Microscopy

How AFM Works 4-4 Scanning Kelvin Probe Microscopy (SKPM), youtube, Park systems, 2015

Significance of the substrate – Silicon Vs HOPG

Silicon substrate 2D Flakes Native Oxide

Figure 2. Commercially available Silicon wafer.

Figure 3. AFM image of the surface of a Silicon wafer.

Figure 6. Commercially available graphite anodes.

Figure 4. Commercially available HOPG.

Figure 5. AFM image of the surface of HOPG.

KPFM Measurements – Silicon substrate

405

2.50

-2.49

0.00489 X Range: 4.99 µm

430

0 X Ranpe: 5 µm

0.5 µm

KPFM Measurements – HOPG substrate

0.5 µm

0 X Range: 5 µm

X Rande Sum

0.5 µm

X Range: 5 µm

Diagram 3. Final diagram of all MXenes' surface potential values in respect to the substrate(Si)

Diagram 4. Final diagram of all MXenes' surface potential values in respect to the substrate (HOPG)

Conclusions

- Morphological characterization of pure and functionalized MXenes (interlayer distance, presence of absorbed molecules detected)
- Work function tuning of the substrate depending on the specific functionalization (despite the similar morphological characteristics)
- ✓ More suitable as substrate → HOPG

Future Work

- Test other possible
 - substrates
- \succ Light illumination \rightarrow
 - observe possible changes
- Test other types of
 - functionalization

Consiglio Nazionale delle Ricerche

Thank you for your Attention!

ULTIMATE

Vasiliki Benekou vasiliki.benekou@isof.cnr.it **ISOF-CNR** 01/09/2021

AUGUSC 31 - SEPCEMBER 03, 2021 💿 BOLOGNA, ICALY

EUROPEAN CONFERENCE ON CHEMISCRY OF TWO-DIMENSIONAL MACERIALS