

Two-dimensional Conjugated Metal-orgnaic Framework Electrocatalyst

CFCECCECCENTERFOR ADVANCING ELECTRONICS DRESDEN

Haixia Zhong, Renhao Dong, Xinliang Feng

Technische Universität Dresden, Mommsenstrasse 4, 01069, Dresden, Germany

Two-dimensional conjugated metal-organic framework (2D *c*-MOF), with highly in-plane π -conjugation and weak out-plane π - π stacking, has emerged as one novel class of promising electrocatalysts due to the intrinsic electrical conductivity, high surface area, dense active sites and structural diversity. Herein, we developed a copper-phthalocyanine-based 2D *c*-MOF (PcCu-O₈-Co/Zn) with square planar CoO₄/ZnO₄ complexes

as linkages toward electrocatalysis oxygen/carbon dioxide reduction reaction (ORR/CO₂RR). PcCu-O₈-Co mixed with carbon nanotubes exhibits excellent electrocatalytic ORR activity ($E_{1/2}$ =0.83 V vs. RHE and j_{L} =5.3 mA cm⁻²) in alkaline media owing to the synergistical contribution of 2D conjugated porous structure and dense CoO₄ sites with unique electric structure. The PcCu-O₈-Zn with carbon nanotube harvests high CO₂RR performance with CO selectivity of 88% and tunable molar H₂/CO ratio (1:7~ 4:1) toward syngas synthesis. The contrast results unveil a synergistic catalytic mechanism; ZnO₄ complexes act as catalytic sites for CO₂ conversion while CuN₄ centers promote the protonation of adsorbed CO₂ during the CO₂RR. Our works highlight the 2D conjugated MOFs with optimized composition/architecture and electronic structure as effective electrocatalysts toward ORR and CO₂RR

Morphology and Structure of PcCu-O₈-Co/Zn

