

Electronic Structures of Two-Dimensional PC₆-type Materials

Maximilian A. Springer,^{1,2} Thomas Brumme,² Agnieszka Kuc,¹ Thomas Heine^{1,2} ¹ Helmholtz-Zentrum Dresden-Rossendorf, Institue of Resource Ecology, Permoserstrasse 15, 04318 Leipzig, Germany ² TU Dresden, Faculty of Chemistry and Food Chemistry, Bergstrasse 66c, 01069 Dresden, Germany

Graphene Functionalization To Open Band Gap

Functionalization of √7 × √7R19.1° super cell of graphene (Fig. 1a, red unit cell) by substitution of marked atoms → PC₆
PC₆ is a semiconductor with Dirac cones above (green bands) and below (pink bands) the Fermi level (Fig. 1c,d).^[1]
≻ How can the Fermi level be shifted to access the Dirac cones?

Substitution Strategy

 If the network structure is retained, also the general shape of the band structure ("characteristic bands") remains the same.

Fig. 1: (a) Graphene monolayer with primitive unit cell (black) and super cell (red), (b) structure of PC_6 , (c) band structure of PC_6 with Dirac cones (dashed circles) above (green bands) and below (pink bands) the Fermi level. C black and P orange.

Adatom Strategy

- According to the number of valence atoms, the Fermi level can be shifted to access Dirac cones above and below the Fermi level:
- Group 14 (Al, Ga): Fermi level below characteristic bands, -4 e⁻/cell w.r.t PC₆
- Group 15 (Ge): Fermi level at lower Dirac cone,
 -2 e⁻/cell w.r.t PC₆.^[2]

- SiC₆: This structure is planar instead of puckered.^[2] Therefore, the characteristic bands are shifted downwards and the Fermi level lies at the upper Dirac cone.
- Group 16 (P, As): Semiconductor with direct band gap at M, Dirac cones above and below Fermi level.
- Group 17 (S, Se): Fermi level at upper Dirac cone, +2 e⁻/cell w.r.t PC₆

Fig. 2: Band structures for (from left to right): GaC_6 , GeC_6 , AsC_6 , and SeC_6 . The energy axes are aligned to fit the axis drawn for GaC_6 .

- By adsorption of hydrogen atoms, two electrons are added to the electron filling. This allows to access the Dirac cone above the Fermi level in PC_6 .^[3]
- Characteristic bands remain the same, since the network structure is not changed.

Mixing Heteroatoms

Besides having both heteroatoms per unit cell from one species, they can also be mixed, e.g., as $PAsC_{12}$. Since two group 16 elements are used, it's a direct band gap semiconductor.

Fig. 4: Structure (right, top and side view) and band structure (left) of PAsC₁₂. C is black, P is orange, As is green.

Conclusions and Outlook

- PC₆-type materials have two Dirac cones close to the Fermi level.
- Characteristic bands remain the same if the structure remains to be buckled

Fig. 3: Structures (top and side view) and band structures of (a) H_2PC_6 and (b) H_2AsC_6 . H is white, C is black, P is orange, As is green.

Acknowledgements

Zentrum für Hochleistungsrechnen (ZIH) Dresden is acknoweldged for computational resources.

(band structure of flat SiC₆ is slightly different).

- The Dirac cones can be accessed by changing the electron filling with:
 - Substitution strategy: elements from adjacent groups have more or less valence electrons, which affects the position of the Fermi level.
- Adatom strategy: adsorption of hydrogen to the heteroatoms results in an increase in electron filling.
- Further research: can these strategies be applied to organic topological insulators?

CONTACT PERSON REFERENCES

[1] T. Yu, Z. Zhao, Y. Sun, A. Bergara, J. Lin, S. Zhang, H. Xu, L. Zhng, G. Yang, Y. Liu, J. Am. Chem. Soc. 141 (2019), 1599.
[2] T. Yang, X. Jiang, W. Yi, X. Cheng, X. Liu, arXiv:2102.04817.
[3] H.-Y. Lu, N. Jiao, B.-W. Li, W.-C. Yi., P. Zhang, Appl. Surf. Sci. 554 (2021), 149635.

